Через длинный соленоид индуктивность которого

Через длинный соленоид индуктивность которого

2017-04-30
Через соленоид, индуктивность которого $L = 0,4 мГн$ и площадь поперечного сечения $S = 10 см^<2>$, проходит ток силой $I = 0,5 А$. Какова индукция магнитного поля внутри соленоида, если он содержит $N = 100$ витков?

Пусть угол между нормалью к плоскости витка соленоида и вектором магнитной индукции $vec$ равен $0^< circ>$. Поток магнитной индукции через один виток равен $BS cos 0^ < circ>= BS$. Тогда магнитный поток через соленоид $Phi = BSN$. С другой стороны, магнитный поток $Phi = LI$, поэтому

$BSN = LI Rightarrow B = frac
= 2 cdot 10^ <-3>Тл$.

Соленоид — длинная, тонкая катушка, то есть катушка, длина которой намного больше, чем её диаметр (также в дальнейших выкладках здесь подразумевается, что толщина обмотки намного меньше, чем диаметр катушки). При этих условиях и без использования магнитного материала плотность магнитного потока внутри катушки является фактически постоянной и (приближенно) равна

где − магнитная постоянная, − число витков, − ток и − длина катушки. Пренебрегая краевыми эффектами на концах соленоида, получим [16] , что потокосцепление через катушку равно плотности потока , умноженному на площадь поперечного сечения и число витков :

Отсюда следует формула для индуктивности соленоида (без сердечника):

Если катушка внутри полностью заполнена магнитным материалом (сердечником), то индуктивность отличается на множитель — относительную магнитную проницаемость [17] сердечника:

В случае, когда , можно (следует) под S понимать площадь сечения сердечника и пользоваться данной формулой даже при толстой намотке, если только полная площадь сечения катушки не превосходит площади сечения сердечника во много раз.

Более точные формулы для соленоида конечного размера

Для однослойного (с очень тонкой намоткой) соленоида конечных размеров (не бесконечно длинного) существуют более точные, хотя и более сложные формулы [18] :

Читайте также:  Драйвер для контроллер универсальной последовательной шины usb

— количество витков,

— радиус цилиндра,

— длина его образующей,

,

,

— Эллиптические интегралы.

для

для

Трансформатор. Энергия магнитного поля. Основы теории Максвелла. Уравнения Максвелла в интегральной форме.

Электрический колебательный контур. Затухающие электромагнитные колебания. Вынужденные электромагнитные колебания. Явление резонанса

Колебательный контур — осциллятор, представляющий собой электрическую цепь, содержащую соединённые катушку индуктивности и конденсатор. В такой цепи могут возбуждаться колебания тока (и напряжения).

Колебательный контур — простейшая система, в которой могут происходить свободные электромагнитные колебания

Резонансная частота контура определяется так называемой формулой Томсона:

Принцип действия

Пусть конденсатор ёмкостью C заряжен до напряжения . Энергия, запасённая в конденсаторе составляет

При соединении конденсатора с катушкой индуктивности, в цепи потечёт ток , что вызовет в катушке электродвижущую силу (ЭДС) самоиндукции, направленную на уменьшение тока в цепи. Ток, вызванный этой ЭДС (при отсутствии потерь в индуктивности) в начальный момент будет равен току разряда конденсатора, то есть результирующий ток будет равен нулю. Магнитная энергия катушки в этот (начальный) момент равна нулю.

Затем результирующий ток в цепи будет возрастать, а энергия из конденсатора будет переходить в катушку до полного разряда конденсатора. В этот момент электрическая энергия конденсатора . Магнитная же энергия, сосредоточенная в катушке, напротив, максимальна и равна

, где — индуктивность катушки, — максимальное значение тока.

После этого начнётся перезарядка конденсатора, то есть заряд конденсатора напряжением другой полярности. Перезарядка будет проходить до тех пор, пока магнитная энергия катушки не перейдёт в электрическую энергию конденсатора. Конденсатор, в этом случае, снова будет заряжен до напряжения .

В результате в цепи возникают колебания, длительность которых будет обратно пропорциональна потерям энергии в контуре.

В общем, описанные выше процессы в параллельном колебательном контуре называются резонанс токов, что означает, что через индуктивность и ёмкость протекают токи, больше тока проходящего через весь контур, причем эти токи больше в определённое число раз, которое называется добротностью. Эти большие токи не покидают пределов контура, так как они противофазны и сами себя компенсируют. Стоит также заметить, что сопротивление параллельного колебательного контура на резонансной частоте стремится к бесконечности (в отличие от последовательного колебательного контура, сопротивление которого на резонансной частоте стремится к нулю), а это делает его незаменимым фильтром.

Читайте также:  Как подключить ми банд 3 к смартфону

Стоит заметить, что помимо простого колебательного контура, есть ещё колебательные контуры первого, второго и третьего рода, что учитывают потери и имеют другие особенности.

Вынужденными электромагнитными колебаниями называют периодические изменения силы тока и напряжения в электрической цепи, происходящие под действием переменной ЭДС от внешнего источника. Внешним источником ЭДС в электрических цепях являются генераторы переменного тока, работающие на электростанциях.

Принцип действия генератора переменного тока легко показать при рассмотрении вращающейся рамки провода в магнитном поле.

В однородное магнитное поле с индукцией В помещаем прямоугольную рамку, образованную проводниками (abсd).

Пусть плоскость рамки перпендикулярна индукции магнитного поля В и ее площадь равна S.

Магнитный поток в момент времени t = 0 будет равен Ф = В*8.

При равномерном вращении рамки вокруг оси OO1 с угловой скоростью w магнитный поток, пронизывающий рамку, будет изменяться с течением времени по закону:

Изменение магнитного потока возбуждает в рамке ЭДС индукцию, равную

где Е= ВSw — амплитуда ЭДС.

Если с помощью контактных колец и скользящих по ним щеток соединить концы рамки с электрической цепью, то под действием ЭДС индукции, изменяющейся со временем по гармоническому закону, в электрической цепи возникнут вынужденные гармонические колебания силы тока — переменный ток.

На практике синусоидальная ЭДС возбуждается не путем вращения рамки в магнитном поле, а путем вращения магнита или электромагнита (ротора) внутри статора — неподвижных обмоток, навитых на сердечники из магнитомягкого материала. В этих обмотках находится переменная ЭДС, что позволяет избежать снятия напряжения с помощью контактных колец.

Явление резонанса относится к наиболее важным с практической точки зрения свойствам электрических цепей. Оно заключается в том, что электрическая цепь, имеющая реактивные элементы обладает чисто резистивным сопротивлением.

Читайте также:  Как создать свою функцию в excel

Общее условие резонанса для любого двухполюсника можно сформулировать в виде Im[Z]=0 или Im[Y]=0, где Z и Y комплексное сопротивление и проводимость двухполюсника. Следовательно, режим резонанса полностью определяется параметрами электрической цепи и не зависит от внешнего воздействия на нее со стороны источников электрической энергии.

2017-04-30
Через соленоид, индуктивность которого $L = 0,4 мГн$ и площадь поперечного сечения $S = 10 см^<2>$, проходит ток силой $I = 0,5 А$. Какова индукция магнитного поля внутри соленоида, если он содержит $N = 100$ витков?

Пусть угол между нормалью к плоскости витка соленоида и вектором магнитной индукции $vec$ равен $0^< circ>$. Поток магнитной индукции через один виток равен $BS cos 0^ < circ>= BS$. Тогда магнитный поток через соленоид $Phi = BSN$. С другой стороны, магнитный поток $Phi = LI$, поэтому

$BSN = LI Rightarrow B = frac
= 2 cdot 10^ <-3>Тл$.

Ссылка на основную публикацию
Adblock detector