Что такое msaa в играх

Что такое msaa в играх

Ни для кого не секрет, что в большинстве современных игр уровня ААА много настроек графики. Но далеко не все знают, какой параметр за что отвечает, какой уровень установить лучше всего и сколько он может отнять ресурсов у ПК. Сегодня мы поговорим о сглаживании.

Начнем с определения:

Сгла́живание (англ. anti-aliasing) — технология, используемая для устранения эффекта «зубчатости», возникающего на краях одновременно выводимого на экран множества отдельных друг от друга плоских или объёмных изображений.

Почему возникает «зубчатость»? Проблема в том, что мониторы современных ПК состоят из квадратных пикселей, а значит на них действительно прямыми будут только горизонтальные и вертикальные линии. Все линии, находящиеся под углом, будут строиться из пикселей, находящихся по диагонали друг к другу, что и вызывает «зубчатость». К примеру, справа на картинке — вроде бы ровная линия. Однако стоит ее увеличить, как сразу становится видно, что никакая она не прямая:

Чем это грозит в играх? Тем, что, во-первых, при движении будет возникать эффект «мерцания» — такие неровные линии будут постоянно перестраиваться, что будет и отвлекать от игры, и делать картинку неестественной. Во-вторых — далекие объекты будут выглядеть нечетко.

Сразу же возникает вопрос — а как убрать эти неприятные эффекты? Самый простой способ — сделать пиксели меньше при том же размере экрана (иными словами — сделать разрешение больше и поднять плотность пикселей). Тогда «зубчатость» будет проявляться слабее, и картинка будет выглядеть естественнее. Но увы — способ хоть и простой, но дорогой, да и для видеокарты это достаточно сильная дополнительная нагрузка. И тогда, дабы улучшить картинку не меняя монитора, было придумано сглаживание.

Типы сглаживания

SSAA (Supersample anti-aliasing) — самое тяжелое сглаживание, потому что оно, по сути, описывает способ убирания лесенок, который я привел выше: при четырехкратном (4х) сглаживании видеокарта готовит картинку в разрешении вчетверо выше, чем выводит на экран, потом происходит усреднение цвета соседних пикселей и вывод на экран в исходном разрешении. Получается, что виртуальная плотность пикселей вдвое выше, чем у экрана, и лесенки практически перестают быть заметными. Очень сильно сказывается на производительности: к примеру, если разрешение в игре 1920х1080, то видеокарта вынуждена готовить картинку в 4К — 3840х2160. Однако результат получается великолепным — картинка выглядит как живая, никакого мельтешения нет:

MSAA (Multisample anti-aliasing) — улучшенная версия SSAA, которая потребляет гораздо меньше ресурсов. К примеру — зачем сглаживать то, что находится внутри текстуры, если лесенки есть только на краях? Если текстура представляет собой прямую линию под углом к игроку, то можно сгладить лишь один участок и продолжить эффект на весь край текстуры. В результате нагрузка на видеокарту становится ощутимо меньше, и по тяжести даже 8х MSAA оказывается ощутимо легче 4х SSAA при сравнимом качестве картинки.

CSAA и CFAA (Coverage Sampling anti-aliasing и Custom-filter anti-aliasing) — по сути несколько улучшенный MSAA от Nvidia и AMD (позволяют выбирать дополнительные отсчёты «перекрытия» пикселя, по которым можно уточнять итоговое значение цвета попадающего на край треугольника экранного пикселя). 8x CSAA/CFAA дает сравнимое с 8x MSAA качество картинки, однако потребляет примерно столько же ресурсов, столько и 4х MSAA. На сегодняшний момент оба сглаживания не используются — разработчики игр решили использовать унифицированные для всех видеокарт сглаживания.

FXAA (Fast approXimate anti-aliasing) — нетребовательное быстрое сглаживание. Алгоритм прост — совершается один проход по всем пикселям изображения и усредняются цвета соседних пикселей. Это слабо нагружает видеокарту, однако сильно мылит картинку (обратите внимание на четкость текстуры камня), делая объекты вдали вообще неузнаваемыми:

Такое сглаживание имеет смысл включать только если лесенки терпеть не можете, а видеокарта не тянет лучшее сглаживание. По сути тут идет выбор между замыливанием изображения и лесенками.

MLAA (MorphoLogical anti-aliasing) — аналог FXAA от Intel. Работает схожим образом, однако алгоритм сложнее — все изображение разбивается на Z, L и U -образные части, и сглаживание происходит смешением цветов пикселей, входящих в каждую такую часть:

Из особенностей — это единственное сглаживание, работающее полностью на процессоре, поэтому практически не влияет на fps в играх при мощном процессоре. Из-за более сложного алгоритма изображение получается более качественным, чем с FXAA, однако до 2x MSAA все еще далеко.

SMAA (Subpixel Morphological anti-aliasing) — смесь FXAA и MLAA. По сути несколько улучшенный MLAA, но работающий на видеокарте (так как процессор для сглаживания подходит гораздо хуже). Дает картинку, сравнимую с MLAA, лучше, чем FXAA (обратите внимание на бочки), однако потребляет больше ресурсов:

Такое сглаживание является хорошей заменой FXAA, и по уровню нагрузки на видеокарту находится между отсутствием сглаживания и 2x MSAA, так что есть надежда, что в будущем игр с ним будет все больше.

TXAA(Temporal antialiasing) — новая технология сглаживания от Nvidia. В отличии от других типов сглаживания, которые работают только с одним кадром (то есть с неподвижной картинкой), это умеет работать с движущимися объектами и хорошо убирает «мельтешение» картинки. По сути является смесью MSAA и SMAA, дает очень качественную картинку, однако немного ее мылит и очень требовательно к ресурсам.

Начнем с определения:

Сгла́живание (англ. anti-aliasing) — технология, используемая для устранения эффекта «зубчатости», возникающего на краях одновременно выводимого на экран множества отдельных друг от друга плоских или объёмных изображений.

Почему возникает «зубчатость»? Проблема в том, что мониторы современных ПК состоят из квадратных пикселей, а значит на них действительно прямыми будут только горизонтальные и вертикальные линии. Все линии, находящиеся под углом, будут строиться из пикселей, находящихся по диагонали друг к другу, что и вызывает «зубчатость». К примеру, справа на картинке — вроде бы ровная линия. Однако стоит ее увеличить, как сразу становится видно, что никакая она не прямая:

Чем это грозит в играх? Тем, что, во-первых, при движении будет возникать эффект «мельтешения» — такие неровные линии будут постоянно перестраиваться, что будет и отвлекать от игры, и делать картинку неестественной. Во-вторых — далекие объекты будут выглядеть нечетко.

Читайте также:  Детские часы элари с алисой

Сразу же возникает вопрос — а как убрать эти неприятные эффекты? Самый простой способ — сделать пиксели меньше при том же размере экрана (иными словами — сделать разрешение больше и поднять плотность пикселей). Тогда «зубчатость» будет проявляться слабее, и картинка будет выглядеть естественнее. Но увы — способ хоть и простой, но дорогой, да и для видеокарты это достаточно сильная дополнительная нагрузка. И тогда, дабы улучшить картинку не меняя монитора, было придумано сглаживание.

SSAA (Supersample anti-aliasing) — самое тяжелое сглаживание, потому что оно, по сути, описывает способ убирания лесенок, который я привел выше: при четырехкратном (4х) сглаживании видеокарта готовит картинку в разрешении вчетверо выше, чем выводит на экран, потом происходит усреднение цвета соседних пикселей и вывод на экран в исходном разрешении. Получается, что виртуальная плотность пикселей вдвое выше, чем у экрана, и лесенки практически перестают быть заметными. Очень сильно сказывается на производительности: к примеру, если разрешение в игре 1920х1080, то видеокарта вынуждена готовить картинку в 4К — 3840х2160. Однако результат получается великолепным — картинка выглядит как живая, никакого мельтешения нет:

MSAA (Multisample anti-aliasing) — улучшенная версия SSAA, которая потребляет гораздо меньше ресурсов. К примеру — зачем сглаживать то, что находится внутри текстуры, если лесенки есть только на краях? Если текстура представляет собой прямую линию под углом к игроку, то можно сгладить лишь один участок и продолжить эффект на весь край текстуры. В результате нагрузка на видеокарту становится ощутимо меньше, и по тяжести даже 8х MSAA оказывается ощутимо легче 4х SSAA при сравнимом качестве картинки.

CSAA и CFAA (Coverage Sampling anti-aliasing и Custom-filter anti-aliasing) — по сути несколько улучшенный MSAA от Nvidia и AMD (позволяют выбирать дополнительные отсчёты «перекрытия» пикселя, по которым можно уточнять итоговое значение цвета попадающего на край треугольника экранного пикселя). 8x CSAA/CFAA дает сравнимое с 8x MSAA качество картинки, однако потребляет примерно столько же ресурсов, столько и 4х MSAA. На сегодняшний момент оба сглаживания не используются — разработчики игр решили использовать унифицированные для всех видеокарт сглаживания.

FXAA (Fast approXimate anti-aliasing) — нетребовательное быстрое сглаживание. Алгоритм прост — совершается один проход по всем пикселям изображения и усредняются цвета соседних пикселей. Это слабо нагружает видеокарту, однако сильно мылит картинку (обратите внимание на четкость текстуры камня), делая далекие объекты вообще неузнаваемыми:

Такое сглаживание имеет смысл включать только если лесенки терпеть не можете, а видеокарта не тянет лучшее сглаживание. По сути тут идет выбор между замыливанием изображения и лесенками.

MLAA (MorphoLogical anti-aliasing) — аналог FXAA от Intel. Работает схожим образом, однако алгоритм сложнее — все изображение разбивается на Z, L и U -образные части, и сглаживание происходит смешением цветов пикселей, входящих в каждую такую часть:

Из особенностей — это единственное сглаживание, работающее полностью на процессоре, поэтому практически не влияет на fps в играх при мощном процессоре. Из-за более сложного алгоритма изображение получается более качественным, чем с FXAA, однако до 2x MSAA все еще далеко.

SMAA (Subpixel Morphological anti-aliasing) — смесь FXAA и MLAA. По сути несколько улучшенный MLAA, но работающий на видеокарте (так как процессор для сглаживания подходит гораздо хуже). Дает картинку, сравнимую с MLAA, лучше, чем FXAA (обратите внимание на бочки), однако потребляет больше ресурсов:

Такое сглаживание является хорошей заменой FXAA, и по уровню нагрузки на видеокарту находится между отсутствием сглаживания и 2x MSAA, так что есть надежда, что в будущем игр с ним будет все больше.

TXAA(Temporal antialiasing) — новая технология сглаживания от Nvidia. В отличии от других типов сглаживания, которые работают только с одним кадром (то есть с неподвижной картинкой), это умеет работать с движущимися объектами и хорошо убирает «мельтешение» картинки. По сути является смесью MSAA и SMAA, дает очень качественную картинку, однако немного ее мылит и очень требовательно к ресурсам.

В итоге — какое сглаживание выбрать? Если видеокарта совсем плохо тянет игру, то или оставаться без сглаживания и смотреть на лесенки, или же выбрать FXAA и любоваться на мыло. Если же система по-мощнее, но MSAA все еще не тянет — стоит выбрать MLAA или SMAA. Если видеокарта играючи справилась с 8х MSAA — стоит смотреть на SSAA или TXAA.

На сайте PC Gamer появился интересный разбор графических настроек в компьютерных играх, где подробно рассказано обо всех популярных инструментах, фильтрах и механизмах обработки изображения. Мы перевели его на русский язык, чтобы вы могли сами настраивать свои игры, избавляться от лагов и любоваться красивой графикой.

Итак, сегодня мы с вами разберемся, что означают те или иные графические настройки в компьютерных играх.

У Nvidia и AMD есть программное обеспечение для автоматической настройки графики согласно техническим характеристикам вашего компьютера. Со своей задачей программы справляются неплохо, но часто ручная настройка приносит куда больше пользы. Все-таки, мы ПК-бояре, у нас должна быть свобода выбора!

Читайте также:  Невозможно обнаружить поставщика этого сертификата тензор

Если вы новичок в области игровой графики, это руководство создано специально для вас. Мы расшифруем основные пункты любого меню «Настройки графики» в ваших играх и объясним, на что они влияют. Эта информация поможет вам избавиться от лагов и фризов в любимой игре, не лишаясь красивой картинки. А владельцы мощных компьютеров поймут, как настроить самую сочную и привлекательную графику, чтобы записывать крутые видео и делать зрелищные скриншоты.

Начнем с фундаментальных понятий, а затем пройдемся по тонким настройкам в рамках нескольких разделов, посвященных анизотропной фильтрации, сглаживанию и постобработке. Для написания этого гайда мы пользовались информацией, полученной от профессионалов: Алекса Остина, дизайнера и программиста Cryptic Sea, Николаса Вайнинга, технического директора и ведущего программиста Gaslamp Games и от представителей Nvidia. Сразу отметим, что статью мы пишем простыми словами, опуская подробные технические детали, чтобы вам было легче понять механизмы работы разных технологий.

Содержание

ОСНОВЫ

Разрешение

Пиксель — основная единица цифрового изображения. Это цветовая точка, а разрешение — количество столбцов и рядов точек на вашем мониторе. Самые распространенные разрешения на сегодня: 1280×720 (720p), 1920×1080 (1080p), 2560×1440 (1440p) и 3840 x 2160 (4K или «Ultra-HD»). Но это для дисплеев формата 16:9. Если у вас соотношение сторон 16:10, разрешения будут слегка отличаться: 1920×1200, 2560×1600 и т.д. У ультрашироких мониторов разрешение тоже другое: 2560×1080, 3440×1440 и т.д.

Кадры в секунду (frames per second, FPS)

Если представить, что игра — это анимационный ролик, то FPS будет числом изображений, показанных за секунду. Это не то же самое, что частота обновления дисплея, измеряемая в герцах. Но эти два параметра легко сравнивать, ведь как монитор на 60 Гц обновляется 60 раз за секунду, так и игра при 60 FPS выдает именно столько кадров за тот же отрезок времени.

Чем сильнее вы загрузите видеокарту обработкой красивых, наполненных деталями игровых сцен, тем ниже будет ваш FPS. Если частота кадров окажется низкой, они будут повторяться и получится эффект подтормаживания и подвисания. Киберспортсмены охотятся за максимальном возможными показателями FPS, особенно в шутерах. А обычные пользователи зачастую довольствуются играбельными показателями — это где-то 60 кадров в секунду. Однако, мониторы на 120-144 Гц становятся более доступными, поэтому потребность в FPS тоже растет. Нет смысла играть на 120 герцах, если система тянет всего 60-70 кадров.

Так как в большинстве игр нет встроенного бенчмарка, для измерения кадров в секунду используется стороннее программное обеспечение, например, ShadowPlay или FRAPS. Однако, некоторые новые игры с DX12 и Vulkan могут некорректно работать с этими программами, чего не наблюдалось со старыми играми на DX11.

Апскейлинг и даунсэмплинг

В некоторых играх есть настройка «разрешение рендеринга» или «rendering resolution» — этот параметр позволяет поддерживать постоянное разрешение экрана, при этом настраивая разрешение, при котором воспроизводится игра. Если разрешение рендеринга игры ниже разрешения экрана, оно будет увеличено до масштабов разрешения экрана (апскейлинг). При этом картинка получится ужасной, ведь она растянется в несколько раз. С другой стороны, если визуализировать игру с большим разрешением экрана (такая опция есть, например, в Shadow of Mordor), она будет выглядеть намного лучше, но производительность станет заметно ниже (даунсэмплинг).

Производительность

На производительность больше всего влияет разрешение, поскольку оно определяет количество обрабатываемых графическим процессором пикселей. Вот почему консольные игры с разрешением 1080p, часто используют апскейлинг, чтобы воспроизводить крутые спецэффекты, сохраняя плавную частоту кадров.

Мы использовали наш Large Pixel Collider (суперкомпьютер от сайта PC Gamer), включив две из четырех доступных видеокарт GTX Titan, чтобы продемонстрировать, как сильно разрешение влияет на производительность.

Тесты проводились в бенчмарке Shadow of Mordor:

1980х720 (½ родного разрешения)

2560х1440 (родное разрешение)

5120х2880 (x2 родного разрешения)

Вертикальная синхронизация и разрывы кадров

Когда цикл обновления дисплея не синхронизирован с циклом рендеринга игры, экран может обновляться в процессе переключения между готовыми кадрами. Получается эффект разрыва кадров, когда мы видим части двух или более кадров одновременно.

Одним из решений этой проблемы стала вертикальная синхронизация, которая почти всегда присутствует в настройках графики. Она не позволяет игре показывать кадр, пока дисплей не завершит цикл обновления. Это вызывает другую проблему — задержка вывода кадров, когда игра способна показать большее количество FPS, но ограничена герцовкой монитора (например, вы могли бы иметь 80 или даже 100 кадров, но монитор позволит показывать только 60).

Адаптивная вертикальная синхронизация

Бывает и так, что частота кадров игры падает ниже частоты обновления монитора. Если частота кадров игры превышена, вертикальная синхронизация привязывает ее к частоте обновления монитора и она, например, на дисплее с 60 Гц не превысит 60 кадров. А вот когда частота кадров падает ниже частоты обновления монитора, вертикальная синхронизация привязывает ее к другому синхронизированному значению, например, 30 FPS. Если частота кадров постоянно колеблется выше и ниже частоты обновления, появляются подтормаживания.

Чтобы решить эту проблему, адаптивная вертикальная синхронизация от Nvidia отключает синхронизацию каждый раз, когда частота кадров падает ниже частоты обновления. Эту функцию можно включить в панели управления Nvidia — она обязательна для тех, кто постоянно включает вертикальную синхронизацию.

Технологии G-sync и FreeSync

Новые технологии помогают разобраться со многими проблемами, которые зачастую основаны на том, что у дисплеев фиксированная частота обновления. Но если частоту дисплея можно было бы изменять в зависимости от FPS, пропали бы разрывы кадров и подтормаживания. Такие технологии уже есть, но для них нужны совместимые видеокарта и дисплей. У Nvidia есть технология G-sync, а у AMD — FreeSync. Если ваш монитор поддерживает одну из них и она подходит к установленной видеокарте, проблемы решены.

Читайте также:  Доклад о первом телефоне

Сглаживание (Anti-aliasing, антиалиасинг)

Инструментов для этого достаточно, но легче объяснить на примере суперсэмплинга (SSAA). Эта технология отрисовывает кадры с более высоким разрешением, чем у экрана, а затем сжимает их обратно до его размера. На предыдущей странице вы могли видеть эффект от сглаживания при уменьшении частоты в Shadow of Mordor с 5120х2880 до 1440p.

Взгляните на пиксель черепичной крыши. Он оранжевого цвета. Тут же и пиксель голубоватого неба. Находясь рядом, они создают жесткий зубчатый переход от крыши к небу. Но если визуализировать сцену с четырехкратным разрешением, вместо одного пикселя оранжевой крыши на этом же месте будут четыре пикселя. Некоторые из них будут оранжевыми, некоторые «небесными». Стоит взять значение всех четырех пикселей, как получится нечто среднее — если по такому принципу построить всю сцену, переходы станут мягче и «эффект лестницы» пропадет.

Такова суть технологии. Но, она требует от системы очень много ресурсов. Ей приходится отрисовывать каждый кадр с разрешением в два или более раз больше, чем оригинальное разрешение экрана. Даже в случае с нашими топовыми видеокартами суперсэмплинг с разрешением 2560х1440 кажется нецелесообразным. К счастью, есть альтернативы:

Мультисэмплинг (MSAA): Эффективнее суперсэмплинга, но все еще прожорлив. В старых играх он был стандартом, а его суть объясняется в видео, которое вы увидите ниже.

Усовершенствованный мультисэмплинг (CSAA): более эффективная версия MSAA от Nvidia для ее видеокарт.

Усовершенствованный мультисэмплинг (CFAA): тоже апгрейд MSAA, только от компании AMD для ее карточек.

Метод быстрого приближения (FXAA): вместо анализа каждого отдельного пикселя, FXAA накладывается в качестве фильтра постобработки на всю сцену целиком после ее рендеринга. FXAA также захватывает места, которые пропускаются при включении MSAA. Хотя сам метод быстрого приближения тоже пропускает много неровностей.

Морфологический метод (MLAA): он свойственен видеокартам AMD и тоже пропускает этап рендеринга. MLAA обрабатывает кадр, выискивая алиасинг и сглаживая его. Как нам объяснил Николас Вайнинг: «Морфологическое сглаживание работает с морфологией (паттернами) неровностей на краях моделей; оно вычисляет оптимальный способ удаления лесенок для каждого вида неровностей путем разбиения краев и зубцов на небольшие наборы морфологических операторов. А затем использует специальные типы смешивания для каждого отдельного набора». Включить MLAA можно в панели управления Catalyst.

Улучшенное субпиксельное морфологическое сглаживание (SMAA): еще один вид постобработки, в котором сочетаются детали MLAA, MSAA и SSAA. Такой метод можно совмещать со SweetFX, а многие современные игры поддерживают его изначально.

Временное сглаживание (TAA или TXAA): TXAA изначально разрабатывалась для графических процессоров Nvidia уровня Kepler и более поздних. Но затем появились не настолько специфические формы временного сглаживания, которые обычно обозначаются, как TAA. При таком способе следующий кадр сравнивается с предыдущим, после чего обнаруживаются и устраняются неровности. Происходит это при поддержке разных фильтров, которые уменьшают «ползающую лесенку» в движении.

Николас Вайнинг объясняет: «Идея TAA заключается в ожидании того, что два идущих друг за другом кадра будут очень похожи, ведь пользователь в игре двигается не настолько быстро. Поэтому раз объекты на экране переместились несильно, мы можем получить данные из предыдущего кадра, чтобы дополнить участки, нуждающиеся в сглаживании».

Многокадровое сглаживание (MFAA): появилось с релизом графических процессоров Maxwell от Nvidia. Тогда как MSAA работает с устойчивыми шаблонами, MFAA позволяет их программировать. Представители Nvidia подробно объясняют технологию в видео ниже (о нем мы уже говорили раньше и очень скоро вы его увидите).

Суперсэмплинг с глубоким обучением (DLSS): новейшая технология Nvidia, доступная лишь в некоторых играх и с видеокартами GeForce RTX. По словам компании: «DLSS использует нейронную сеть для определения многомерных особенностей визуализированной сцены и интеллектуального объединения деталей из нескольких кадров для создания высококачественного финального изображения. DLSS использует меньше сэмплов, чем TAA, при этом избегая алгоритмических трудностей с прозрачностями и другими сложными элементами сцен».

Другими словами, DLSS справляется с задачей лучше и эффективнее, чем TAA, но технологию нужно отдельно готовить к каждой игре. Если не обучить ее должным образом, многие места окажутся размытыми.

Что означают цифры?

В настройках сглаживания вы часто видите значения: 2x, 4x, 8x и т.д. Эти цифры рассказывают о количестве используемых образцов цвета и, как правило, чем больше число, тем точнее будет сглаживание (при этом оно потребует больше системных ресурсов).

Но есть исключения. Так, CSAA пытается достичь сглаживания на уровне MSAA с меньшим количеством образцов цвета. Поэтому 8xCSAA фактически использует только четыре образца цвета. Есть и 8QxCSAA — этот способ сглаживания увеличивает количество образцов цвета до восьми, чтобы повысить точность.

Производительность

Мы использовали бенчмарк Batman: Arkham City, чтобы протестировать несколько старых методов сглаживания: MSAA, FXAA и TXAA. Результаты, как и ожидалось, показывают, что FXAA требует меньше всего ресурсов, в то время как MSAA и TXAA сильно влияют на среднюю частоту кадров.

Результаты тестирования сглаживания в Batman: Arkham City (на двух Nvidia GTX Titan SLI):

Ссылка на основную публикацию
Adblock detector