Формула ачх и фчх

Формула ачх и фчх

(амплитудно-частотные и фазочастотные характеристики)

Отношение комплексного напряжения на входе к комплексному току на входе называется комплексным входным сопротивлением

Зависимость модуля комплексного входного сопротивления от частоты называется входной АЧХ, — входная АЧХ

Зависимость аргумента комплексного входного сопротивления от частоты называется входной ФЧХ, — входная ФЧХ.

Частота, на которой действительная и мнимая часть комплексного входного сопротивления равны, называется граничной ().

Входные характеристики цепи RL

Выведем формулу граничной частоты цепи RL

— формула граничной частоты цепи

Порядок построения входных характеристик

1. Записываем входное сопротивление цепи в комплексной форме

2. Записываем модуль комплексного входного сопротивления

3. Выражаем модуль комплексного входного сопротивления через граничную частоту

— формула входной АЧХ цепи

Построим входную АЧХ, задавшись несколькими частотами.

4. Выведем формулу входной ФЧХ

— формула входной ФЧХ цепи RL

Построим входную ФЧХ, задавшись несколькими частотами.

1) с ростом частоты входное сопротивление цепи RL возрастает;

2) входная ФЧХ цепи RL имеет линейный участок на частотах от до

Входные характеристики цепи RC

Выведем формулу граничной частоты цепи RC

— формула граничной частоты цепи

Порядок построения входных характеристик

1. Записываем входное сопротивление цепи в комплексной форме

2. Записываем модуль комплексного входного сопротивления

3. Выражаем модуль комплексного входного сопротивления через граничную частоту

— формула входной АЧХ цепи

Построим входную АЧХ, задавшись несколькими частотами.

4. Выведем формулу входной ФЧХ

— формула входной ФЧХ цепи RС

Построим входную ФЧХ, задавшись несколькими частотами.

1) с ростом частоты входное сопротивление цепи RС уменьшается;

2) входная ФЧХ цепи RС имеет линейный участок на частотах от до

3) на граничной частоте в цепях первого порядка (1 катушка, 1 конденсатор) ,

Чтобы построить входные АЧХ качественно надо задаться двумя частотами и . Для цепи с катушкой характеристика всегда возрастает, а с конденсатором убывает и она нелинейна.

При

При

При

При

Когда тот или иной физик использует понятие "физический вакуум", он либо не понимает абсурдности этого термина, либо лукавит, являясь скрытым или явным приверженцем релятивистской идеологии.

Понять абсурдность этого понятия легче всего обратившись к истокам его возникновения. Рождено оно было Полем Дираком в 1930-х, когда стало ясно, что отрицание эфира в чистом виде, как это делал великий математик, но посредственный физик Анри Пуанкаре, уже нельзя. Слишком много фактов противоречит этому.

Для защиты релятивизма Поль Дирак ввел афизическое и алогичное понятие отрицательной энергии, а затем и существование "моря" двух компенсирующих друг друга энергий в вакууме — положительной и отрицательной, а также "моря" компенсирующих друг друга частиц — виртуальных (то есть кажущихся) электронов и позитронов в вакууме.

Однако такая постановка является внутренне противоречивой (виртуальные частицы ненаблюдаемы и их по произволу можно считать в одном случае отсутствующими, а в другом — присутствующими) и противоречащей релятивизму (то есть отрицанию эфира, так как при наличии таких частиц в вакууме релятивизм уже просто невозможен). Подробнее читайте в FAQ по эфирной физике.

НОВОСТИ ФОРУМА
Рыцари теории эфира
01.10.2019 — 05:20: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ — Upbringing, Inlightening, Education ->
[center][Youtube]69vJGqDENq4[/Youtube][/center]
[center]14:36[/center]
Osievskii Global News
29 сент. Отправлено 05:20, 01.10.2019 г.’ target=_top>Просвещение от Вячеслава Осиевского — Карим_Хайдаров.
30.09.2019 — 12:51: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ — Upbringing, Inlightening, Education ->
[center][Ok]376309070[/Ok][/center]
[center]11:03[/center] Отправлено 12:51, 30.09.2019 г.’ target=_top>Просвещение от Дэйвида Дюка — Карим_Хайдаров.
30.09.2019 — 11:53: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ — Upbringing, Inlightening, Education ->
[center][Youtube]VVQv1EzDTtY[/Youtube][/center]
[center]10:43[/center]

интервью Раввина Борода https://cursorinfo.co.il/all-news/rav.
мой телеграмм https://t.me/peshekhonovandrei
мой твиттер https://twitter.com/Andrey54708595
мой инстаграм https://www.instagram.com/andreipeshekhonow/

[b]Мой комментарий:
Андрей спрашивает: Краснодарская синагога — это что, военный объект?
— Да, военный, потому что имеет разрешение от Росатома на манипуляции с радиоактивными веществами, а также иными веществами, опасными в отношении массового поражения. Именно это было выявлено группой краснодарцев во главе с Мариной Мелиховой.

[center][Youtube]CLegyQkMkyw[/Youtube][/center]
[center]10:22 [/center]

Доминико Риккарди: Россию ждёт страшное будущее (хотелки ЦРУ):
https://tainy.net/22686-predskazaniya-dominika-rikardi-o-budushhem-rossii-sdelannye-v-2000-godu.html

Завещание Алена Даллеса / Разработка ЦРУ (запрещено к ознакомлению Роскомнадзором = Жид-над-рус-надзором)
http://av-inf.blogspot.com/2013/12/dalles.html

[center][b]Сон разума народа России [/center]

[center][Youtube]CLegyQkMkyw[/Youtube][/center]
[center]10:22 [/center]

Доминико Риккарди: Россию ждёт страшное будущее (хотелки ЦРУ):
https://tainy.net/22686-predskazaniya-dominika-rikardi-o-budushhem-rossii-sdelannye-v-2000-godu.html

Завещание Алена Даллеса / Разработка ЦРУ (запрещено к ознакомлению Роскомнадзором = Жид-над-рус-надзором)
http://av-inf.blogspot.com/2013/12/dalles.html

[center][b]Сон разума народа России [/center]

Амплитудно-частотная характеристика

Аббревиатура АЧХ расшифровывается как амплитудно-частотная характеристика. На английском этот термин звучит как “frequency response”, что в дословном переводе означает “частотный отклик”. Амплитудно-частотная характеристика цепи показывает зависимость уровня сигнала на выходе данного устройства от частоты передаваемого сигнала при постоянной амплитуде синусоидального сигнала на входе этого устройства. АЧХ может быть определена аналитически через формулы, либо экспериментально. Любое устройство предназначено для передачи (или усиления) электрических сигналов. АЧХ устройства определяется по зависимости коэффициента передачи (или коэффициента усиления) от частоты.

Коэффициент передачи

Что такое коэффициент передачи? Коэффициент передачи – это отношение напряжения на выходе цепи к напряжению на ее входе. Или формулой:

Читайте также:  Найдите производную функции y x2 cosx

Uвых – напряжение на выходе цепи

Uвх – напряжение на входе цепи

В усилительных устройствах коэффициент передачи больше единицы. Если устройство вносит ослабление передаваемого сигнала, то коэффициент передачи меньше единицы.

Коэффициент передачи может быть выражен через децибелы:

Строим АЧХ RC-цепи в программе Proteus

Для того, чтобы досконально разобраться, что такое АЧХ, давайте рассмотрим рисунок ниже.

Итак, имеем “черный ящик”, на вход которого мы будем подавать синусоидальный сигнал, а на выходе черного ящика мы будем снимать сигнал. Должно соблюдаться условие: нужно менять частоту входного синусоидального сигнала, но его амплитуда должна быть постоянной.

Что нам делать дальше? Надо измерить амплитуду сигнала на выходе после черного ящика при интересующих нас значениях частоты входного сигнала. То есть мы должны изменять частоту входного сигнала от 0 Герц (постоянный ток) и до какого-либо конечного значения, которое будет удовлетворять нашим целям, и смотреть, какая амплитуда сигнала будет на выходе при соответствующих значениях на входе.

Давайте разберем все это дело на примере. Пусть в черном ящике у нас будет самая простая RC-цепь с уже известными номиналами радиоэлементов.

Как я уже говорил, АЧХ может быть построено экспериментально, а также с помощью программ-симуляторов. На мой взгляд, самый простой и мощный симулятор для новичков – это Proteus. С него и начнем.

Собираем данную схему в рабочем поле программы Proteus

Для того, чтобы подать на вход схемы синусоидальный сигнал, мы кликаем на кнопочку “Генераторы”, выбираем SINE, а потом соединяем его со входом нашей схемы.

Для измерения выходного сигнала достаточно кликнуть на значок с буквой “V” и соединить выплывающий значок с выходом нашей схемы:

Для эстетики, я уже поменял название входа и выхода на sin и out. Должно получиться как-то вот так:

Ну вот, пол дела уже сделано.

Теперь осталось добавить важный инструмент. Он называется “frequency response”, как я уже говорил, в дословном переводе с английского – “частотный отклик”. Для этого нажимаем кнопочку “Диаграмма” и в списке выбираем “frequency”

На экране появится что-то типа этого:

Кликаем ЛКМ два раза и открывается вот такое окошко, где в качестве входного сигнала мы выбираем наш генератор синуса (sin), который у нас сейчас задает частоту на входе.

Здесь же выбираем диапазон частоты, который будем “загонять” на вход нашей цепи. В данном случае это диапазон от 1 Гц и до 1 МГц. При установке начальной частоты в 0 Герц Proteus выдает ошибку. Поэтому, ставьте начальную частоту близкую к нулю.

Далее нажимаем ПКМ на самой табличке Frequency Response и видим вот такой выплывающий список, в котором нажимаем “Добавить трассы”

Долго не думая, выбираем в первом же окошке наш выход out

и в результате должно появится окошко с нашим выходом

Нажимаем пробел и радуемся результату

Итак, что интересного можно обнаружить, если взглянуть на нашу АЧХ? Как вы могли заметить, амплитуда на выходе цепи падает с увеличением частоты. Это означает, что наша RC-цепь является своеобразным частотным фильтром. Такой фильтр пропускает низкие частоты, в нашем случае до 100 Герц, а потом с ростом частоты начинает их “давить”. И чем больше частота, тем больше он ослабляет амплитуду выходного сигнала. Поэтому, в данном случае, наша RC-цепь является самым простейшим фильтром низкой частоты (ФНЧ).

Полоса пропускания

В среде радиолюбителей и не только встречается также такой термин, как полоса пропускания. Полоса пропускания – это диапазон частот, в пределах которого АЧХ радиотехнической цепи или устройства достаточно равномерна, чтобы обеспечить передачу сигнала без существенного искажения его формы.

Как же определить полосу пропускания? Это сделать довольно легко. Достаточно на графике АЧХ найти уровень в -3 дБ от максимального значения АЧХ и найти точку пересечения прямой с графиком. В нашем случае это можно сделать легче пареной репы. Достаточно развернуть нашу диаграмму на весь экран и с помощью встроенного маркера посмотреть частоту на уровне в -3 дБ в точке пересечения с нашим графиком АЧХ. Как мы видим, она равняется 159 Герц.

Частота, которая получается на уровне в -3 дБ, называется частотой среза. Для RC-цепи ее можно найти по формуле:

Для нашего случая расчетная частота получилась 159,2 Гц, что подтверждает и Proteus.

Кто не желает связываться с децибелами, то можно провести линию на уровне 0,707 от максимальной амплитуды выходного сигнала и смотреть пересечение с графиком. В данном примере, для наглядности, я взял максимальную амплитуду за уровень в 100%.

Как построить АЧХ на практике?

Как построить АЧХ на практике, имея в своем арсенале генератор частоты и осциллограф?

Итак, поехали. Собираем нашу цепь в реале:

Ну а теперь цепляем ко входу схемы генератор частоты, а с помощью осциллографа следим за амплитудой выходного сигнала, а также будем следить за амплитудой входного сигнала, чтобы мы были точно уверены, что на вход RC-цепи подается синус с постоянной амплитудой.

Читайте также:  Реплика samsung galaxy note

Для экспериментального изучения АЧХ нам потребуется собрать простенькую схемку:

Наша задача состоит в том, чтобы менять частоту генератора и уже наблюдать, что покажет осциллограф на выходе цепи. Мы будем прогонять нашу цепь по частотам, начиная от самой малой. Как я уже сказал, желтый канал предназначен для визуального контроля, что мы честно проводим опыт.

Постоянный ток, проходящий через эту цепь, на выходе будет давать амплитудное значение входного сигнала, поэтому первая точка будет иметь координаты (0;4), так как амплитуда нашего входного сигнала 4 Вольта.

Следующее значение смотрим на осциллограмме:

Частота 15 Герц, амплитуда на выходе 4 Вольта. Итак, вторая точка (15;4)

Третья точка (72;3.6). Обратите внимание на амплитуду выходного красного сигнала. Она начинает проседать.

Четвертая точка (109;3.2)

Пятая точка (159;2.8)

Шестая точка (201;2.4)

Седьмая точка (273;2)

Восьмая точка (361;1.6)

Девятая точка (542;1.2)

Десятая точка (900;0.8)

Ну и последняя одиннадцатая точка (1907;0.4)

В результате измерений у нас получилась табличка:

Строим график по полученным значениям и получаем нашу экспериментальную АЧХ 😉

Получилось не так, как в технической литературе. Оно и понятно, так как по Х берут логарифмический масштаб, а не линейный, как у меня на графике. Как вы видите, амплитуда выходного сигнала будет и дальше понижаться с увеличением частоты. Для того, чтобы еще более точно построить нашу АЧХ, требуется взять как можно больше точек.

Давайте вернемся к этой осциллограмме:

Здесь на частоте среза амплитуда выходного сигнала получилась ровно 2,8 Вольт, которые как раз и находятся на уровне в 0,707. В нашем случае 100% это 4 Вольта. 4х0,707=2,82 Вольта.

АЧХ полосового фильтра

Существуют также схемы, АЧХ которых имеет вид холма или ямы. Давайте рассмотрим один из примеров. Мы будем рассматривать так называемый полосовой фильтр, АЧХ которого имеет вид холма.

Собственно сама схема:

Особенность таких фильтров, что они имеют две частоты среза. Определяются они также на уровне в -3дБ или на уровне в 0,707 от максимального значения коэффициента передачи, а еще точнее Ku max/√2.

Так как в дБ смотреть график неудобно, поэтому я переведу его в линейный режим по оси Y, убирая маркер

В результате перестроения получилась такая АЧХ:

Максимальное значение на выходе составило 498 мВ при амплитуде входного сигнала в 10 Вольт. Мдя, неплохой “усилитель”) Итак, находим значение частот на уровне в 0,707х498=352мВ. В результате получились две частоты среза – это частота в 786 Гц и в 320 КГц. Следовательно, полоса пропускания данного фильтра от 786Гц и до 320 КГц.

На практике для получения АЧХ используются приборы, называемые характериографами для исследования АЧХ. Вот так выглядит один из образцов Советского Союза

Фазо-частотная характеристика

ФЧХ расшифровывается как фазо-частотная характеристика, phase response – фазовый отклик. Фазо-частотная характеристика – это зависимость сдвига по фазе между синусоидальными сигналами на входе и выходе устройства от частоты входного колебания.

Разность фаз

Думаю, вы не раз слышали такое выражение, как ” у него произошел сдвиг по фазе”. Это выражение не так давно пришло в наш лексикон и обозначает оно то, что человек слегка двинулся умом. То есть было все нормально, а потом раз! И все :-). И в электронике такое тоже часто бывает) Разницу между фазами сигналов в электронике называют разностью фаз. Вроде бы “загоняем” на вход какой-либо сигнал, а выходной сигнал ни с того ни с сего взял и сдвинулся по времени, относительно входного сигнала.

Для того, чтобы определить разность фаз, должно выполняться условие: частоты сигналов должны быть равны. Пусть даже один сигнал будет с амплитудой в Киловольт, а другой в милливольт. Неважно! Лишь бы соблюдалось равенство частот. Если бы условие равенства не соблюдалось, то сдвиг фаз между сигналами все время бы изменялся.

Для определения сдвига фаз используют двухканальный осциллограф. Разность фаз чаще всего обозначается буквой φ и на осциллограмме это выглядит примерно так:

Строим ФЧХ RC-цепи в Proteus

Для нашей исследуемой цепи

Для того, чтобы отобразить ее в Proteus мы снова открываем функцию “frequency response”

Все также выбираем наш генератор

Не забываем проставлять испытуемый диапазон частот:

Далее нажимаем ПКМ на самой табличке Frequency Response и видим вот такой выплывающий список, в котором нажимаем “Добавить трассы”

Долго не думая, выбираем в первом же окошке наш выход out

И теперь главное отличие: в колонке “Ось” ставим маркер на “Справа”

Нажимаем пробел и вуаля!

Можно его развернуть на весь экран

При большом желании эти две характеристики можно объединить на одном графике

Читайте также:  Как добавить в эксель анализ данных

Обратите внимание, что на частоте среза сдвиг фаз между входным и выходным сигналом составляет 45 градусов или в радианах п/4 (кликните для увеличения)

В данном опыте при частоте более 100 КГц разность фаз достигает значения в 90 градусов (в радианах π/2) и уже не меняется.

Строим ФЧХ на практике

ФЧХ на практике можно измерить также, как и АЧХ, просто наблюдая разность фаз и записывая показания в табличку. В этом опыте мы просто убедимся, что на частоте среза у нас действительно разность фаз между входным и выходным сигналом будет 45 градусов или π/4 в радианах.

Итак, у меня получилась вот такая осциллограмма на частоте среза в 159,2 Гц

Нам надо узнать разность фаз между этими двумя сигналами

Весь период – это 2п, значит половина периода – это π. На полупериод у нас приходится где-то 15,5 делений. Между двумя сигналами разность в 4 деления. Составляем пропорцию:

Отсюда х=0,258п или можно сказать почти что 1/4п. Следовательно, разница фаз между двумя этими сигналами равняется п/4, что почти в точности совпало с расчетными значениями в Proteus.

Резюме

Амплитудно-частотная характеристика цепи показывает зависимость уровня сигнала на выходе данного устройства от частоты передаваемого сигнала при постоянной амплитуде синусоидального сигнала на входе этого устройства.

Фазо-частотная характеристика – это зависимость сдвига по фазе между синусоидальными сигналами на входе и выходе устройства от частоты входного колебания.

Коэффициент передачи – это отношение напряжения на выходе цепи к напряжению на ее входе. Если коэффициент передачи больше единицы, то электрическая цепь усиливает входной ссигнал, если же меньше единицы, то ослабляет.

Полоса пропускания – это диапазон частот, в пределах которого АЧХ радиотехнической цепи или устройства достаточно равномерна, чтобы обеспечить передачу сигнала без существенного искажения его формы. Определяется по уровню 0,707 от максимального значения АЧХ.

Формулы амплитудно-частотной и фазо-частотной характеристик (АЧХиФЧХ) можно получить с помощью дробно-рациональной операторной функции КU(р). Для этого нужно заменить операторную переменную р на мнимую частоту jω (p=jω). Получится комплексная функция частоты KU(jω). Необходимо выделить действительную и мнимуючасти в числителе и знаменателе, а затем преобразовать комплексную функцию частоты KU(jω) в показательную форму:

. (7)

Формула АЧХ представляет собой зависимость модуля (амплитуды) комплексной функции от частоты:

. (8)

Для нашего примера (см. ф.(6))

. (9)

Учитывая (8), и что

A(ω)=(10 10 –ω 2 ) B(ω)=0, C(ω)=(10 10 –ω 2 ) D(ω)=0.3636·10 5 ω,

получим выражение (10) АЧХ

Формула ФЧХ выражает зависимость аргумента (фазового угла) комплексной функции KU(jω) от частоты:

где φ числ(ω) – аргумент комплексного числителяКU(jω),

φ знам(ω) – аргумент комплексного знаменателяКU(jω).

При записи формул для φ числ(ω) и φ знам(ω) следует учитывать, что фазовый угол произвольного комплексного числа M(jω)=А(ω)+jB(ω) вычисляется различным образом в зависимости от положения комплексного числа на комплексной плоскости (см. таблицу 1).

Отсюда следует, что выражение ФЧХ может быть записано несколькими формулами, каждая из которых справедлива в некотором своем диапазоне частот. Граничные частоты диапазонов можно оценить приближенно, так как в точках, близких к биссектрисам координатных квадрантов, можно пользоваться формулами обеих соседних областей.

Для нашего примера действительные A(ω) и C(ω) и мнимая D(ω) части числителя и знаменателя коэффициента передачи (9) зависят от частоты и не только меняют свое значение, но и меняют знак. А это значит, что комплексные числа числителя и знаменателя меняют свое положение на комплексной плоскости. Это обстоятельство требует анализа аргументов числителя φчисл(ω) и знаменателя φзнам(ω) при изменении частоты от нуля до бесконечности.

1). Анализ числителя для определения его аргумента.

Действительная часть числителя равна A(ω)=10 10 –ω 2 . Если , т.е. , числитель представляет собой действительное и положительное число – A(ω) ≥ 0. Поэтому φчисл(ω)=0 при .

При , A(ω) 10 –ω 2 и изменяется с изменением частоты также, как и числитель. Мнимая часть знаменателя D(ω)=0.3636·10 5 ω прямо пропорциональна частоте ω и положительная D(ω)> 0 при ω > 0.

№пп Область компл. пл. Условия M(jω)=A(ω)+jB(ω) Формула φ (ω)=
1) A(ω) > 0. úB(ω)ú £ A(ω) .
2) B(ω) > 0. úA(ω)ú £ B(ω) .
3) B(ω)£ 0. úA(ω)ú £ –B(ω) .
4) A(ω) 0. úB(ω)ú £–A(ω) .
5) A(ω)

При точка, отображающая знаменатель, находится в первом квадранте комплексной плоскости, причем при ω>0.8346 10 5 она пересекает биссектрису первого квадранта. Поэтому в диапазоне 0 5 при вычислении фазового угла знаменателя нужно использовать формулу 1 из таблицы 1:

При 0.8346·10 5 5 отображающая точка находится в области 2 таблицы 1. Поэтому

При ω >1.1982·10 5 точка переходит в область 4 таблицы 1.

Таким образом, ФЧХ коэффициента передачи в нашем примере будет описываться различными формулами для четырех частотных областей.

Ссылка на основную публикацию
Adblock detector