Электрическое поле равномерно заряженной нити

Электрическое поле равномерно заряженной нити

Рассмотрим бесконечную нить, несущую заряд, равномерно распределённый по её длине. Заряд, сосредоточенный на бесконечно нити, конечно, тоже бесконечен, и поэтому он не может служить количественной характеристикой степени заряженности нити. В качестве такой характеристики принимается «линейная плотность заряда». Эта величина равна заряду, распределённому на отрезке нити единичной длины:

.

Выясним, какова напряженность поля, создаваемого заряженной нитью на расстоянии а от неё (рис. 1.12).

Для вычисления напряжённости вновь воспользуемся принципом суперпозиции электрических полей и законом Кулона. Выберем на нити элементарный участок dl.На этом участке сосредоточен заряд dq = tdl, который можно считать точечным. В точке А такой заряд создаёт поле (см. 1.3)

Исходя из симметрии задачи, можно заключить, что искомый вектор напряжённости поля будет направлен по линии, перпендикулярной нити, то есть вдоль оси х. Поэтому сложение векторов напряжённости, можно заменить сложением их проекцией на это направление.

(1.7)

Рис. (1.12 b) позволяет сделать следующие заключения:

(1.8)

. (1.9)

Используя (1.8) и (1.9) в уравнении (1.7), получим

(1.10)

Теперь для решения задачи осталось проинтегрировать (1.10) по всей длине нити. Это означает, что угол a будет меняться от до .

(1.11)

В этой задаче поле обладает цилиндрической симметрией. Напряжённость поля прямо пропорциональна линейной плотности заряда на нити t и обратно пропорциональна расстоянию а от нити до той точки, где измеряется напряжённость.

Лекция 2 «Теорема Гаусса для электрического поля»

Поток вектора напряженности электрического поля.

Теорема Гаусса для электрического поля.

Применение теоремы Гаусса для расчёта электрических полей.

Поле бесконечной заряженной нити.

Поле бесконечной заряженной плоскости. Поле плоского конденсатора.

Поле сферического конденсатора.

Первую лекцию мы закончили расчётом напряжённости полей электрического диполя и бесконечно заряженной нити. В обоих случаях использовался принцип суперпозиции электрических полей. Теперь обратимся ещё к одному методу вычисления напряжённости, основанному на теореме Гаусса для электрического поля. В этой теореме речь идёт о потоке вектора напряжённости через произвольную замкнутую поверхность. Поэтому прежде чем преступить к формулировке и доказательству теоремы, обсудим понятие «поток вектора».

Поток вектора напряжённости электрического поля

Выделим в однородном электрическом поле плоскую поверхность (рис. 2.1.). Эта поверхность — вектор, численно равный площади поверхности DS и направленный перпендикулярно поверхности

Читайте также:  Чтобы лобовое стекло не запотевало

(2.1)

Но единичный нормальный вектор может быть направлен как в одну, так и в другую сторону от поверхности (рис. 2.2.). Произвольно выберем положительное направление нормали так, как это показано на рис. 2.1. По определению потоком вектора напряжённости электрического поля через выделенную поверхность называется скалярное произведение этих двух векторов:

(2.2)

Если поле в общем случае неоднородно, а поверхность S, через которую следует вычислить поток, не плоская, то эту поверхность делят на элементарные участки , в пределах которых напряжённость можно считать неизменённой, а сами участки — плоскими (рис. 2.3.) Поток вектора напряжённости через такой элементарный участок вычисляется по определению потока

(2.3)

Здесь En = E ∙ cosa — проекция вектора напряжённости на направление нормали . Полный поток через всю поверхность S найдём, проинтегрировав (2.3) по всей поверхности

(2.4)

Теперь представим себе замкнутую поверхность в электрическом поле. Для отыскания потока вектора напряжённости через подобную поверхность проделаем следующие операции (рис. 2.4.):

Разделим поверхность на участки . Важно отметить при этом, что в случае замкнутой поверхности положительной считается только «внешняя» нормаль .

Вычислим поток на каждом элементарном участке :

Обратите внимание на то, что вектор «вытекающий» из замкнутой поверхности создаёт положительный поток, а «втекающий» — отрицательный.

Для вычисления полного потока вектора напряжённости через всю замкнутую поверхность, все эти потоки нужно алгебраически сложить, то есть уравнение (2.3) проинтегрировать по замкнутой поверхности S

(2.5)

Кружок на знаке интеграл означает, что интегрирование производится по замкнутой поверхности.

Напомним, что при графическом изображении полей, густота силовых линий в произвольной точке поля числено равна значению напряжённости поля в этой точке. Это означает, что

.

Тогда число силовых линий, пронизывающих поверхность dS, можно записать так

Но ведь это определение потока вектора напряжённости через поверхность dS.

Таким образом, поток вектора напряжённости через поверхность dS численно равен числу силовых линий, пронизывающих эту поверхность (!).

Этот вывод справедлив и для потока электрического поля через замкнутую поверхность: этот поток будет равен алгебраической сумме силовых линий втекающих (–) и вытекающих (+) из замкнутой поверхности.

Теперь обратимся к теореме Гаусса.

Дата добавления: 2015-08-08 ; просмотров: 5394 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Поле бесконечной заряженной нити

Рассмотрим поле, созданное зарядом, равномерно распределенным по бесконечной нити. Эту задачу мы решили на прошлой лекции, воспользовавшись принципом суперпозиции электрических полей (см. 1.11).

Читайте также:  Zyxel keenetic start настройка iptv ростелеком

Теперь покажем, несколько проще можно рассчитать это поле с помощью теоремы Гаусса.

Определим напряжённость поля на расстоянии rот нити, заряженной с постоянной линейной плотностью:

, [Кл/м] (2.10)

Окружим нить замкнутой цилиндрической поверхностью (рис. 2.7.). Высота цилиндра — h, а радиус его основания —r.

Поле, созданное заряженной нитью, обладает цилиндрической симметрией. В связи с этим векторы напряжённости во всех точках боковой поверхности цилиндра будут одинаковы по модулю и направлены радиально, то есть перпендикулярно к боковой поверхности цилиндра. На основаниях цилиндра векторы , направленные по-прежнему радиально, «скользят» по основанию, образуя прямой угол с нормалью.

Вычислим поток вектора через поверхность выбранного цилиндра. Полный поток через эту замкнутую «гауссову» поверхность складывается из потока через боковую поверхность цилиндра и через два его основания:

Последние два интеграла равны нулю, так как «скользящие» по основаниям цилиндра векторы не пронизывают их и не создают никакого потока. Формально эти два интеграла равны нулю, так как между векторамиипрямой угол и. Таким образом

Во всех точках боковой поверхности цилиндра E=Еr=constи.

Поэтому поток через боковую поверхность цилиндра равен

(2.11)

Это поток вектора напряжённости электрического поля, вычисленный по определению потока.

Теперь воспользуемся теоремой Гаусса, отметив предварительно, что «заряд, заключённый внутри гауссовой поверхности» в данном случае сосредоточен на отрезке нити h— на оси цилиндра:

(2.12)

Отсюда теперь легко получить знакомую нам гиперболическую зависимость напряжённости поля от расстояния до нити — r(см. 1.11).

(2.13)

Поле бесконечной равномерно заряженной плоскости. Поле плоского конденсатора

Пусть электрическое поле создаётся зарядом, равномерно распределённым по поверхности безграничной плоскости, с поверхностной плотностью (рис. 2.8.)

Из симметрии задачи следует, что поле повсюду направлено перпендикулярно к поверхности. Выясним, как меняется напряжённость поля по мере удаления от заряженной плоскости.

В качестве гауссовой поверхности удобно выбрать цилиндр. Ось цилиндра направим перпендикулярно плоскости, его основание расположим на расстоянии Хсимметрично по обе стороны от поверхности.

Вычислим поток вектора напряжённости через боковую поверхность и основания цилиндра. Как следует из рис. 2.8., поток вектора напряжённости через боковую поверхность цилиндра равен нулю, так как здесь повсюду векторы напряжённости «скользят» по поверхности и.

Читайте также:  Есть ли у сома зубы

Тогда полный поток через замкнутую цилиндрическую поверхность можно записать как поток через два основания цилиндра.

(2.14)

Это величина, рассчитанная по определению потока.

Теперь воспользуемся теоремой Гаусса, заметив, что заряд q, «находящийся внутри гауссовой поверхности», в данном случае сосредоточен на площадкеS=Sосн, «вырезанной» цилиндром на бесконечной плоскости

(2.15)

Объединим результаты(2.15) и (2.14) в уравнение Гаусса:

(2.16)

Вывод. Поле, созданное бесконечной равномерно заряженной плоскостью, однородно. Оно не меняется с расстоянием от заряженной поверхности ни по величине, ни по направлению.

Теперь рассмотрим еще один важный пример. Пусть поле создаётся двумя бесконечными плоскостями, заряженными разноименно, но с одинаковой по величине поверхностной плотностью заряда (рис. 2.9.). Это важная идеализация электростатики — плоский конденсатор. Каждая обкладка этого конденсатора создаёт однородное поле, напряжённость которого мы только что установили (2.16):

.

Силовые линии поля положительно заряженной плоскости направлены от неё, а отрицательной — к плоскости. При сложении этих полей, напряжённость результирующего поля вне конденсатора оказывается равной нулю, а внутри конденсатора, где эти поля совпадают по направлению, — поле удваивается:

. (2.17)

Перейдем к расчету ноля, создаваемого бесконечной нитью с постоянной линейной плотностью заряда

на расстоянии К от нити. Линейная плотность заряда измеряется в Кл/м. Выберем в качестве гауссовой поверхности цилиндр радиуса г и высоты h с осью, совпадающей с нитью (рис. 16.7).

В силу симметрии напряженность поля Набоковой поверхности цилиндра постоянна по модулю и перпендикулярна боковой поверхности. Нормальная составляющая напряженности на основаниях цилиндра равна нулю (как п соответствующий поток) — тоже из соображений симметрии. Поэтому поток вектора напряженности через выделенную замкнутую поверхность определяется только потоком через боковую поверхность цилиндра и равен произведению напряженности на площадь боковой поверхности цилиндра E2nRh. В свою очередь заряд внутри цилиндра равен Xh. По теореме Гаусса

откуда поле равномерно заряженной бесконечной нити равно

Похожим образом рассчитывается поле равномерно заряженной цилиндрической поверхности. При этом несложно показать, что поле снаружи от такой поверхности совпадает с полем нити, а поле внутри такой поверхности из-за отсутствия заряда равно нулю.

Ссылка на основную публикацию
Adblock detector