Модель леонтьева в excel

Модель леонтьева в excel

Лабораторная работа № 5

Лабораторная работы №5 состоит из двух тем: Тема 1. Экономико-математическая модель межотраслевого баланса (модель Леонтьева), и Тема 2. Экономико-математическая модель международной торговли.

Тема 1. Экономико-математическая модель межотраслевого баланса (модель Леонтьева). Моделирование средствами Excel.

Программное обеспечение: Microsoft Excel

Основные сведения

Рассмотрим модель межотраслевого баланса, называемую еще моделью Леонтьева или моделью «затраты-выпуск».

Предположим, что производственный сектор народного хозяйства разбит на n отраслей (энергетика, машиностроение, сельское хозяйство и т.д.).

Рассмотрим отрасль i, i = 1, 2,…, n. Она выпускает некую продукцию за данный промежуток времени (например, за год) в объеме xi, который еще называют валовым выпуском. Часть объема продукции xi , произведенная i-ой отраслью используется для собственного производства в объеме xii , часть – поступает в остальные отрасли j = 1, 2,…, n для потребления при производстве в объемах xij , и некоторая часть объемом yi – для потребления в непроизводственной сфере, так называемый объем конечного потребления. Перечисленные сферы распределения валового продукта i-ой отрасли приводят к соотношению баланса

, i = 1, 2,…, n .

Введем коэффициенты прямых затрат aij , которые показывают, сколько единиц продукции i-ой отрасли затрачивается на производство одной единицы продукции в отрасли j. Тогда можно записать, что количество продукции, произведенной в отрасли i в объеме xij и поступающей для производственных нужд в отрасль j, равно

Считаем сложившуюся технологию производства во всех отраслях неизменной (за рассматриваемый период времени), означающую, что коэффициенты прямых затрат aij постоянны. Тогда получаем следующее соотношение баланса, называемого моделью Леонтьева

, i = 1, 2,…, n . (1)

Введя вектор валового выпуска X, матрицу прямых затрат A и вектор конечного потребления Y

модель Леонтьева (1) можно записать в матричном виде

Матрица A ≥ 0, у которой все элементы aij ≥ 0 (неотрицательны), называется продуктивной матрицей, если существует такой неотрицательный вектор X ≥ 0, для которого выполняется неравенство

Это неравенство означает, что существует хотя бы один режим работы отраслей данной экономической системы, при котором продукции выпускается больше, чем затрачивается на ее производство. Другими словами, при этом режиме создается конечный (прибавочный) продукт Y = X – AX > 0.

Модель Леонтьева с продуктивной матрицей A называется продуктивной моделью.

Для проверки продуктивности матрицы A достаточно существования обратной матрицы B = (E – A) -1 с неотрицательными элементами, где матрица E – единичная матрица

.

С помощью модели Леонтьева (2) можно выполнить три вида плановых расчетов, при условии соблюдения условия продуктивности матрицы A:

1) Зная (или задавая) объемы валовой продукции всех отраслей X можно определить объемы конечной продукции всех отраслей Y

2) Задавая величины конечной продукции всех отраслей Y можно определить величины валовой продукции каждой отрасли

3) Задавая для ряда отраслей величины валовой продукции, а для всех остальных отраслей – объемы конечной продукции, можно найти величины конечной продукции первых отраслей и объемы валовой продукции вторых.

называется матрицей полных материальных затрат. Ее смысл следует из матричного равенства (3), которое можно записать в виде X = BY. Элементы матрицы B показывают, сколько всего необходимо произвести продукции в i-ой отрасли, для выпуска в сферу конечного потребления единицы продукции отрасли j.

Читайте также:  Как убрать заставку днс на windows 10

Пример с использованием технологии Excel

Задача. Экономическая система состоит из трех отраслей, для которых матрица прямых затрат A и вектор конечного продукта Y известны:

.

1) Матрицу коэффициентов полных материальных затрат B

2) Проверить продуктивность матрицы A

2) Вектор валового выпуска X

3) Межотраслевые поставки продукции xij

Программное обеспечение: Microsoft Excel

Рассмотрим модель межотраслевого баланса, называемую еще моделью Леонтьева или моделью «затраты-выпуск».

Предположим, что производственный сектор народного хозяйства разбит на n отраслей (энергетика, машиностроение, сельское хозяйство и т.д.).

Рассмотрим отрасль i, i = 1, 2,…, n. Она выпускает некую продукцию за данный промежуток времени (например, за год) в объеме xi, который еще называют валовым выпуском. Часть объема продукции xi , произведенная i-ой отраслью используется для собственного производства в объеме xii , часть – поступает в остальные отрасли j = 1, 2,…, n для потребления при производстве в объемах xij , и некоторая часть объемом yi – для потребления в непроизводственной сфере, так называемый объем конечного потребления. Перечисленные сферы распределения валового продукта i-ой отрасли приводят к соотношению баланса

, i = 1, 2,…, n .

Введем коэффициенты прямых затрат aij , которые показывают, сколько единиц продукции i-ой отрасли затрачивается на производство одной единицы продукции в отрасли j. Тогда можно записать, что количество продукции, произведенной в отрасли i в объеме xij и поступающей для производственных нужд в отрасль j, равно

Считаем сложившуюся технологию производства во всех отраслях неизменной (за рассматриваемый период времени), означающую, что коэффициенты прямых затрат aij постоянны. Тогда получаем следующее соотношение баланса, называемого моделью Леонтьева

, i = 1, 2,…, n . (1)

Введя вектор валового выпуска X, матрицу прямых затрат A и вектор конечного потребления Y

модель Леонтьева (1) можно записать в матричном виде

Матрица A ≥ 0, у которой все элементы aij ≥ 0 (неотрицательны), называется продуктивной матрицей, если существует такой неотрицательный вектор X ≥ 0, для которого выполняется неравенство

Это неравенство означает, что существует хотя бы один режим работы отраслей данной экономической системы, при котором продукции выпускается больше, чем затрачивается на ее производство. Другими словами, при этом режиме создается конечный (прибавочный) продукт Y = X – AX > 0.

Модель Леонтьева с продуктивной матрицей A называется продуктивной моделью.

Для проверки продуктивности матрицы A достаточно существования обратной матрицы B = (E – A) -1 с неотрицательными элементами, где матрица E – единичная матрица

.

С помощью модели Леонтьева (2) можно выполнить три вида плановых расчетов, при условии соблюдения условия продуктивности матрицы A:

1) Зная (или задавая) объемы валовой продукции всех отраслей X можно определить объемы конечной продукции всех отраслей Y

2) Задавая величины конечной продукции всех отраслей Y можно определить величины валовой продукции каждой отрасли

3) Задавая для ряда отраслей величины валовой продукции, а для всех остальных отраслей – объемы конечной продукции, можно найти величины конечной продукции первых отраслей и объемы валовой продукции вторых.

Читайте также:  Переделка блока питания на tl494

называется матрицей полных материальных затрат. Ее смысл следует из матричного равенства (3), которое можно записать в виде X = BY. Элементы матрицы B показывают, сколько всего необходимо произвести продукции в i-ой отрасли, для выпуска в сферу конечного потребления единицы продукции отрасли j.

Пример с использованием технологии Excel

Задача. Экономическая система состоит из трех отраслей, для которых матрица прямых затрат A и вектор конечного продукта Y известны:

.

1) Матрицу коэффициентов полных материальных затрат B

2) Проверить продуктивность матрицы A

2) Вектор валового выпуска X

3) Межотраслевые поставки продукции xij

Математическая модель и последовательность расчетов

Модель Леонтьева имеет вид

Матрица полных материальных затрат B равна

Продуктивность матрицы A проверяется, по вычисленной матрице B. Если эта матрица существует и все ее элементы неотрицательны, то матрица A продуктивна.

Вектор валового выпуска X рассчитывается по формуле

Межотраслевые поставки продукции xij вычисляются по формуле

Процесс решения задачи средствами Microsoft Excel

Для решения задачи межотраслевого баланса необходимо уметь выполнять с помощью Excel следующие операции над матрицами:

Макроэкономика функционирования многоотраслевого хозяйства требует баланса между отдельными отраслями. Каждая отрасль, с одной стороны, является производителем, а с другой — потребителем продукции, выпускаемой другими отраслями. Возникает довольно непростая задача расчета связи между отраслями через выпуск и потребление продукции разного вида. Впервые эта проблема была сформулирована в виде математической модели в 1936 г. в трудах известного американского экономиста В.В.Леонтьева, который попытался проанализировать причины экономической депрессии США 1929-1932 гг. Эта модель основана на алгебре матриц.

Суть сводится к следующему.

Основу информационного обеспечения модели межотраслевого баланса составляет технологическая матрица, содержащая коэффициенты прямых материальных затрат на производство единицы продукции. Эта матрица является также основой экономико-математической модели межотраслевого баланса. Предполагается, что производствао единицы продукции в j-й отрасли требует определенное количество затрат промежуточной продукции i-й отрасли, равное аij. Оно не зависит от объема производства в отрасли и является довольно стабильной величиной во времени. Величины аij называются коэффициентами прямых материальных затрат и рассчитываются следующим образом:

Коэффициент прямых материальных затрат показывает, какое количество продукции i-й отрасли необходимо, если учитывать только прямые затраты, для производства единицы продукции j-й отрасли.

Систему уравнений баланса можно переписать в виде

Если ввести в рассмотрение матрицу коэффициентов прямых материальных затрат А= (аij), вектор-столбец валовой продукции X и вектор-столбец конечной продукции Y:

то система уравнений в матричной форме примет вид:

Полученная система уравнений называется экономико-математической моделью межотраслевого баланса (моделью Леонтьева, моделью "затраты-выпуск"). С помощью этой модели можно выполнять три варианта расчетов:

o Задав в модели величины валовой продукции каждой отрасли (Xi), можно определить объемы конечной продукции каждой отрасли (Yi):

o Задав величины конечной продукции всех отраслей (Уг), можно определить величины валовой продукции каждой отрасли (Х)

Читайте также:  Как установить freeboot на xbox 360 fat

o Для ряда отраслей задав величины валовой продукции, а для всех остальных отраслей задав объемы конечной продукции, можно найти величины конечной продукции первых отраслей и объемы валовой продукции вторых.

В формулах Е обозначает единичную матрицу n-го порядка, а (Е — А) -1 обозначает матрицу, обратную к матрице (Е — А). Если определитель матрицы (Е — А) не равен нулю, т.е. эта матрица невырожденная, то обратная к ней матрица существует. Обозначим эту обратную матрицу через В=(Е —А) -1 , тогда систему уравнений в матричной форме (2) можно записать в виде

Элементы матрицы В будем обозначать через bij, тогда из матричного уравнения для любой i-й отрасли можно получить следующее соотношение:

Из последних соотношений следует, что валовая продукция выступает как взвешенная сумма величин конечной продукции, причем весами являются коэффициенты bij, которые показывают, сколько всего нужно произвести продукции i-й отрасли для выпуска в сферу конечного использования единицы продукции j-й отрасли. В отличие от коэффициентов прямых затрат аij коэффициенты bij называются коэффициентами полных материальных затрат и включают в себя как прямые, так и косвенные затраты всех порядков. Если прямые затраты отражают количество средств производства, израсходованных непосредственно при изготовлении данного продукта, то косвенные относятся к предшествующим стадиям производства и входят в производство продукта не прямо, а через другие (промежуточные) средства производства.

Пример нахождения вектора валовой продукции

Для трехотраслевой экономической системы заданы матрица коэффициентов прямых материальных затрат и вектор конечной продукции:

Найти вектор валовой продукции.

1. Определим матрицу коэффициентов полных материальных затрат.

a. Находим матрицу (Е-А)

b. Вычисляем определитель этой матрицы

c. Транспонируем матрицу (Е-А)

d. Находим алгебраические дополнения для элементов матрицы (Е-А)’

Таким образом, присоединенная матрица имеет вид:

e. Находим матрицу коэффициентов полных материальных затрат:

2. Найдем величины валовой продукции трех отраслей (вектор X),:

Нахождения вектора валовой продукции в Excel.

Модель Леонтьева межотраслевого баланса в режиме формул:

Результаты расчетов представленной модели:

Искомый вектор валового выпуска отраслей занимает диапазон Е12:Е14.

В процессе решения задачи использовались следующие функции:

1. МОБР — возвращает обратную матрицу для матрицы, хранящейся в массиве.

Синтаксис: МОБР (массив).

Массив — числовой массив с равным количеством строк и столбцов.

После введения функции в левую верхнюю ячейку диапазона массива следует выделить массив, начиная с ячейки, содержащей формулу, нажать клавишу F2, а затем нажать клавиши CTRL+SHIFT+ENTER.

2. МУМНОЖ — возвращает произведение матриц (матрицы хранятся в массивах). Результатом является массив с таким же числом строк, как массив1 и с таким же числом столбцов, как массив2.

Массив1, массив2 — перемножаемые массивы.

После введения функции в левую верхнюю ячейку диапазона массива следует выделить массив, начиная с ячейки, содержащей формулу, нажать клавишу F2, а затем нажать клавиши CTRL+SHIFT+ENTER.

Ссылка на основную публикацию
Мегафон модем служба не запущена
Здесь легко и интересно общаться. Присоединяйся! Comodo Internet Security Premium 2014 бесплатное комплексное решение безопасности. Защищает от вирусов, интернет-атак и...
Куосера пишет неоригинальный картридж
Современные принтеры японской компании Kyocera, которые были разработаны после 2013 года оснащены специальным механизмом. Он определяет количество тонера в картридже...
Листы для морского боя распечатать
Игра “морской бой” остаётся популярной во все времени. Для того, чтобы играть в Морской бой необходимы две карточки, на которых...
Метод ирвина в excel
Пример . Проверить ряд на наличие выбросов методом Ирвина, сгладить метод простой скользящей средней с интервалом сглаживания 3, методом экспоненциального...
Adblock detector