Схема подключения шим контроллера

Схема подключения шим контроллера

Раньше для питания устройств использовали схему с понижающим (или повышающим, или многообмоточным) трансформатором, диодным мостом, фильтром для сглаживания пульсаций. Для стабилизации использовались линейные схемы на параметрических или интегральных стабилизаторах. Главным недостатком был низкий КПД и большой вес и габариты мощных блоков питания.

Во всех современных бытовых электроприборах используются импульсные блоки питания (ИБП, ИИП – одно и то же). В большинстве таких блоков питания в качестве основного управляющего элемента используют ШИМ-контроллер. В этой статье мы рассмотрим его устройство и назначение.

Определение и основные преимущества

ШИМ-контроллер – это устройство, которое содержит в себе ряд схемотехнических решений для управления силовыми ключами. При этом управление происходит на основании информации полученной по цепям обратной связи по току или напряжению – это нужно для стабилизации выходных параметров.

Иногда, ШИМ-контроллерами называются генераторы ШИМ-импульсов, но в них нет возможности подключить цепи обратной связи, и они подходят скорее для регуляторов напряжения, чем для обеспечения стабильного питания приборов. Однако в литературе и интернет-порталах часто можно встретить названия типа «ШИМ-контроллер, на NE555» или «… на ардуино» — это не совсем верно по вышеуказанным причинам, они могут использоваться только для регулирования выходных параметров, но не для их стабилизации.

Аббревиатура «ШИМ» расшифровывается, как широтно-импульсная модуляция – это один из методов модуляции сигнала не за счёт величины выходного напряжения, а именно за счёт изменения ширины импульсов. В результате формируется моделируемый сигнал за счёт интегрирования импульсов с помощью C- или LC-цепей, другими словами – за счёт сглаживания.

Вывод: ШИМ-контроллер – устройство, которое управляет ШИМ-сигналом.

Основные характеристики

Для ШИМ-сигнала можно выделить две основных характеристики:

1. Частота импульсов – от этого зависит рабочая частота преобразователя. Типовыми являются частоты выше 20 кГц, фактически 40-100 кГц.

2. Коэффициент заполнения и скважность. Это две смежных величины характеризующие одно и то же. Коэффициент заполнения может обозначаться буквой S, а скважность D.

где T – это период сигнала,

Коэффициент заполнения – часть времени от периода, когда на выходе контроллера формируется управляющий сигнал, всегда меньше 1. Скважность всегда больше 1. При частоте 100 кГц период сигнала равен 10 мкс, а ключ открыт в течении 2.5 мкс, то коэффициент заполнения – 0.25, в процентах – 25%, а скважность равна 4.

Также важно учитывать внутреннюю конструкцию и предназначение по количеству управляемых ключей.

Отличия от линейных схем потери

Как уже было сказано, преимуществом перед линейными схемами у импульсных источников питания является высокий КПД (больше 80, а в настоящее время и 90%). Это обусловлено следующим:

Допустим сглаженное напряжение после диодного моста равно 15В, ток нагрузки 1А. Вам нужно получить стабилизированное питание напряжением 12В. Фактически линейный стабилизатор представляет собой сопротивление, которое изменяет свою величину в зависимости от величины входного напряжения для получения номинального выходного – с небольшими отклонениями (доли вольт) при изменениях входного (единицы и десятки вольт).

На резисторах, как известно, при протекании через них электрического тока выделяется тепловая энергия. На линейных стабилизаторах происходит такой же процесс. Выделенная мощность будет равна:

Так как в рассмотренном примере ток нагрузки 1А, входное напряжение 15В, а выходное – 12В, то рассчитаем потери и КПД линейного стабилизатора (КРЕНка или типа L7812):

Pпотерь=(15В-12В)*1А = 3В*1А = 3Вт

Тогда КПД равен:

Если же входное напряжение вырастит до 20В, например, то КПД снизится:

Основной особенностью ШИМ является то, что силовой элемент, пусть это будет MOSFET, либо открыт полностью, либо полностью закрыт и ток через него не протекает. Поэтому потери КПД обусловлены только потерями проводимости

И потерями переключения. Это тема для отдельной статьи, поэтому не будем останавливаться на этом вопросе. Также потери блока питания возникают в выпрямительных диодах (входных и выходных, если блок питания сетевой), а также на проводниках, пассивных элементах фильтра и прочем.

Общая структура

Рассмотрим общую структуру абстрактного ШИМ-контроллер. Я употребил слово "абстрактного" потому что, в общем, все они похожи, но их функционал все же может отличаться в определенных пределах, соответственно будет отличаться структура и выводы.

Внутри ШИМ-контроллера, как и в любой другой ИМС находится полупроводниковый кристалл, на котором расположена сложная схема. В состав контроллера входят следующие функциональные узлы:

1. Генератор импульсов.

2. Источник опорного напряжения. (ИОН)

3. Цепи для обработки сигнала обратной связи (ОС): усилитель ошибки, компаратор.

4. Генератор импульсов управляет встроенными транзисторами, которые предназначены для управления силовым ключом или ключами.

Количество силовых ключей, которыми может управлять ШИМ-контроллер, зависит от его предназначения. Простейшие обратноходовые преобразователи в своей схеме содержат 1 силовой ключ, полумостовые схемы (push-pull) — 2 ключа, мостовые — 4.

От типа ключа также зависит выбор ШИМ-контроллера. Для управления биполярным транзистором основным требованием является, чтобы выходной ток управления ШИМ-контроллера не был ниже, чем ток транзистора деленный на H21э, чтобы его включать и отключать достаточно просто подавать импульсы на базу. В этом случае подойдет большинство контроллеров.

В случае управления ключами с изолированным затвором (MOSFET, IGBT) есть определенные нюансы. Для быстрого отключения нужно разрядить емкость затвора. Для этого выходную цепь затвора выполняют из двух ключей — один из них соединен с источником питания с выводом ИМС и управляет затвором (включает транзистор), а второй установлен между выходом и землей, когда нужно отключить силовой транзистор — первый ключ закрывается, второй открывается, замыкая затвор на землю и разряжает его.

В некоторых ШИМ-контроллрах для маломощных блоков питания (до 50 Вт) силовые ключи встроенные и внешние не используются. Пример — 5l0830R

Если говорить обобщенно, то ШИМ-контроллер можно представить в виде компаратора, на один вход которого подан сигнал с цепи обратной связи (ОС), а на второй вход пилообразный изменяющийся сигнал. Когда пилообразный сигнал достигает и превышает по величине сигнал ОС, то на выходе компаратора возникает импульс.

При изменениях сигналов на входах ширина импульсов меняется. Допустим, что вы подключили мощный потребитель к блоку питания, и на его выходе напряжение просело, тогда напряжение ОС также упадет. Тогда в большей части периода будет наблюдаться превышение пилообразного сигнала над сигналом ОС, и ширина импульсов увеличится. Всё вышесказанное в определенной мере отражено на графиках.

Рабочая частота генератора устанавливается с помощью частотозадающей RC-цепи.

Функциональная схема ШИМ-контроллера на примере TL494, мы рассмотрим его позже подробнее. Назначение выводов и отдельных узлов описано в следующем подзаголовке.

Назначение выводов

ШИМ-контроллеры выпускаются в различных корпусах. Выводов у них может быть от трех до 16 и более. Соответственно от количества выводов, а вернее их назначения зависит гибкость использования контроллера. Например, в популярной микросхеме UC3843 — чаще всего 8 выводов, а в еще более культовой — TL494 — 16 или 24.

Поэтому рассмотрим типовые названия выводов и их назначение:

GND – общий вывод соединяется с минусом схемы или с землей.

Uc (Vc) – питание микросхемы.

Ucc (Vss, Vcc) – Вывод для контроля питания. Если питание проседает, то возникает вероятность того, что силовые ключи не будут полностью открываться, а из-за этого начнут греться и сгорят. Вывод нужен чтобы отключить контроллер в подобной ситуации.

OUT – как видно из название — это выход контроллера. Здесь выводятся управляющий ШИМ-сигнал для силовых ключей. Выше мы упомянули, что в преобразователях разных топологий имеют разное количество ключей. Название вывода может отличаться в зависимости от этого. Например, в контроллерах для полумостовых схем он может называться HO и LO для верхнего и нижнего ключа соответственно. При этом и выход может быть однотактный и двухтактный (с одним ключем и двумя) — для управления полевыми транзисторами (пояснение см. выше). Но и сам контроллер может быть для однотактной и двухтактной схемы — с одним и двумя выходными выводами соответственно. Это важно.

Vref – опорное напряжения, обычно соединяется с землей через небольшой конденсатор (единицы микрофарад).

ILIM – сигнал с датчика тока. Нужен для ограничения выходного тока. Соединяется с цепями обратной связи.

ILIMREF – на ней устанавливается напряжение срабатывания ножки ILIM

SS – формируется сигнал для мягкого старта контроллера. Предназначен для плавного выхода на номинальный режим. Между ней и общим проводом для обеспечения плавного пуска устанавливают конденсатор.

RtCt – выводы для подключения времязадающей RC-цепи, которая определяет частоту ШИМ-сигнала.

CLOCK – тактовые импульсы для синхронизации нескольких ШИМ-контроллеров между собой тогда RC-цепь подключается только к ведущему контроллеру, а RT ведомых с Vref, CT ведомых соединяюся с общим.

RAMP – это ввод сравнения. На него подают пилообразное напряжение, например с вывода Ct, Когда оно превышает значение напряжение на выходе усиления ошибки, то на OUT появляется отключающий импульс — основа для ШИМ-регулирования.

INV и NONINV – это инвертирующий и неинвертирующий входы компаратора, на котором построен усилитель ошибки. Простыми словами: чем больше напряжении на INV — тем длинее выходные импульсы и наоборот. К нему подключается сигнал с делителя напряжения в цепи обратной связи с выхода. Тогда неинвертирующий вход NONINV подключают к общему проводу — GND.

EAOUT или Error Amplifier Output рус. Выход усилителя ошибки. Не смотря на то, что есть входы усилителя ошибки и с их помощью, в принципе можно регулировать выходные параметры, но контроллер довольно медленно на это реагирует. В результате медленной реакции может возникнуть возбуждение схемы, и она выйдет из строя. Поэтому с этого вывода через частотозависимые цепи подают сигналы на INV. Это еще называется частотной коррекцией усилителя ошибки.

Читайте также:  Интересные факты о колонках

Примеры реальных устройств

Для закрепления информации давайте рассмотрим несколько примеров типовых ШИМ-контроллеров и их схем включения. Мы будем делать это на примере двух микросхем:

TL494 (её аналоги: KA7500B, КР1114ЕУ4, Sharp IR3M02, UA494, Fujitsu MB3759);

Они активно используются в блоках питания для компьютеров. Кстати, эти блоки питания обладают немалой мощностью (100 Вт и больше по 12В шине). Часто используются в качестве донора для переделки под лабораторный блок питания или универсальное мощное зарядное устройство, например для автомобильных аккумуляторов.

TL494 – обзор

Начнем с 494-й микросхемы. Её технические характеристики:

В этом конкретном примере можно видеть большинство описанных выше выводов:

1. Неинвертирующий вход первого компаратора ошибки

2. Инвертирующий вход первого компаратора ошибки

3. Вход обратной связи

4. Вход регулировки мертвого времени

5. Вывод для подключения внешнего времязадающего конденсатора

6. Вывод для подключения времязадающего резистора

7. Общий вывод микросхемы, минус питания

8. Вывод коллектора первого выходного транзистора

9. Вывод эмиттера первого выходного транзистора

10. Вывод эмиттера второго выходного транзистора

11. Вывод коллектора второго выходного транзистора

12. Вход подачи питающего напряжения

13. Вход выбора однотактного или же двухтактного режима работы микросхемы

14. Вывод встроенного источника опорного напряжения 5 вольт

15. Инвертирующий вход второго компаратора ошибки

16. Неинвертирующий вход второго компаратора ошибки

На рисунке ниже изображен пример компьютерного блока питания на этой микросхеме.

UC3843 — обзор

Другой популярной ШИМ является микросхема 3843 – на ней также строятся компьютерные и не только блоки питания. Её цоколевка расположена ниже, как вы можете наблюдать, у неё всего 8 выводов, но функции она выполняет те же, что и предыдущая ИМС.

Бывает UC3843 и в 14-ногом корпусе, но встречаются гораздо реже. Обратите внимание на маркировку – дополнительные выводы либо дублируются, либо незадействованы (NC).

Расшифруем назначением выводов:

1. Вход компаратора (усилителя ошибки).

2. Вход напряжения обратной связи. Это напряжение сравнивается с опорным внутри ИМС.

3. Датчик тока. Подключается к резистору стоящему в между силовым транзистором и общим проводом. Нужен для защиты от перегрузок.

4. Времязадающая RC-цепь. С её помощью задаётся рабочая частота ИМС.

6. Выход. Управляющее напряжение. Подключается к затвору транзистора, здесь двухтактный выходной каскад для управления однотактным преобразователем (одним транзистором), что можно наблюдать на рисунке ниже.

7. Напряжение питания микросхемы.

8. Выход источника опорного напряжения (5В, 50 мА).

Её внутренняя структура.

Можно убедится, что во многом похожа и на другие ШИМ-контроллеры.

Простая схема сетевого источника питания на UC3842

ШИМ со встроенным силовым ключем

ШИМ-контроллеры со встроенным силовым ключем используются как в трансформаторных импульсных блоках питания, так и в бестрансформаторных DC-DC преобразователях понижающего (Buck), повышающего (Boost) и понижающее-повышающего (Buck-Boost) типов.

Пожалуй, одним из наиболее удачных примеров будет распространенная микросхема LM2596, на базе которого на рынке можно найти массу таких преобразователей, как изображен ниже.

Такая микросхема содержит в себе все вышеописанные технические решения, а также вместо выходного каскада на маломощных ключах в ней встроен силовой ключ, способный выдержать ток до 3А. Ниже изображена внутренняя структура такого преобразователя.

Можно убедиться, что в сущности особых отличий от рассмотренных в ней нет.

А вот пример трансформаторного блока питания для светодиодной ленты на подобном контроллере, как видите силового ключа нет, а только микросхема 5L0380R с четырьмя выводами. Отсюда следует, что в определенных задачах сложная схемотехника и гибкость TL494 просто не нужна. Это справедливо для маломощных блоков питания, где нет особых требований к шумам и помехам, а выходные пульсации можно погасить LC-фильтром. Это блок питания для светодиодных лент, ноутбуков, DVD-плееров и прочее.

Заключение

В начале статьи было сказано о том, что ШИМ-контроллер это устройство которое моделирует среднее значение напряжения за счет изменения ширина импульсов на основании сигнала с цепи обратной связи. Отмечу, что названия и классификация у каждого автора часто отличается, иногда ШИМ-контроллером называют простой ШИМ-регулятор напряжения, а описанное в этой статьей семейство электронных микросхем называют «Интегральная подсистема для импульсных стабилизированных преобразователей». От названия суть не меняется, но возникают споры и недопонимания.

На сегодняшний день разработано около 14 различных топологий импульсных источников питания (табл. 1). Каждая обладает уникальными свойствами, позволяющими использовать ее для решения своего круга задач.

Таблица 1. Базовые топологии схем, применяемые при построении импульсных источников питания

Топология Схема Мощность,
Вт
Область применения Особенности
Обратноходовый
(flyback)
до 300 Источники питания бытовой аппаратуры (TV, DVD и т.п.), мощные зарядные устройства и внешние блоки питания. Простота схемы, низкая стоимость
Прямоходовый
(feed forward)
до 300 Источники питания бытовой аппаратуры (TV, DVD и т.п.), мощные зарядные устройства, внешние и встроенные блоки питания. Пониженный уровень помех, повышенная эффективность при низких выходных напряжениях
Резонансный
(resonance)
до 300 Источники питания бытовой аппаратуры (TV, DVD и т.п.) Высокая рабочая частота и как следствие — малые габариты, простота фильтрации помех
Двухтактный
(push-pull)
100…5000 Внешние и встраиваемые источники питания для бытовой, промышленной и автомобильной аппаратуры Пониженный уровень помех
Полумостовой
(half-bridge)
100…1000 Внешние и встраиваемые источники питания (например, компьютеры) Малые габариты
Пониженный уровень помех
Мостовой
(full-bridge)
100…3000 Блоки бесперебойного питания, зарядные устройства Повышенный КПД

Сегодня «сердцем» практически любого современного трансформаторного импульсного источника питания средней и высокой мощности является специализированная ИС, управляющая работой внешнего силового транзистора/транзисторов. В подавляющем большинстве таких источников используется несколько режимов управления работой силовых транзисторов: широтно-импульсный (PWM — ШИМ), частотно-импульсный (FPM — ЧИМ), квазирезонансный (QR). Также зачастую с целью повышения КПД используется смешанный режим: ЧИМ или квазирезонансный режимы — на низкой выходной мощности, а ШИМ — на средних и больших мощностях.

Задачи и функции ШИМ-контроллеров сводятся не только к управлению внешними силовыми транзисторами и поддержанию выходного напряжения на требуемом уровне с заданной погрешностью. В действительности в перечень этих функции в обязательном порядке входят:

контроль состояния ключевых транзисторов (ограничение тока и скважности импульсов управления);

плавный запуск после подачи питания (плавный пуск);

контроль уровня входного напряжения и его «провалов» и «выбросов»;

защита от пробоя силового трансформатора и выходным цепей выходного выпрямителя;

контроль температуры самого контроллера (реже и силовых транзисторов).

Условно все производимые ШИМ-контроллеры STMicroelectronics (табл. 2) можно разделить на три группы: управление по напряжению, управление по току и смешанное управление.

Таблица 2. Краткие характеристики и параметры ШИМ-контроллеров STMicroelectronics

Наимено-
вание
Режим
управления
Входное
напря-
жение, В
Выходное
напря-
жение, В
Макс.
выход-
ной
ток, А
Макс.
частота
регули-
рования,
кГц
Скваж-
ность,
%
Корпус
Мин. Макс. Мин. Макс.
SG2525A Напряжение 8 35 0,5 500 49 DIP16/SO16
SG3524 Напряжение 8 40 0,1 300 45 DIP16/SO16
SG3525A Напряжение 8 35 0,5 500 49 DIP16/SO16
L5991 Ток 12 20 4,92 5,08 1,5 100 93 DIP16/SO16
UC2842B Ток 11 30 1 500 100 DIP8/SO8
UC2843B Ток 8,2 30 1 500 100 DIP8/SO8
UC2844B Ток 11 30 1 500 50 DIP8/SO8
UC2845B Ток 8,2 30 1 500 50 DIP8/SO8
UC3842B Ток 11 30 1 500 100 DIP8/SO8
UC3843B Ток 8,2 30 1 500 100 DIP8/SO8
UC3844B Ток 11 30 1 500 50 DIP8/SO8
UC3845B Ток 8,2 30 1 500 50 DIP8/SO8
L6566A Смешанное 8 23 4,95 5,05 0,8 300 70 SO16
L6566B Смешанное 8 23 4,95 5,05 0,8 300 70 SO16
L6668 Смешанное 9,4 22 0,8 105 75 SO16

SG2525A/SG3524/SG3525A — серия управляемых напряжением ШИМ-контроллеров (рис. 1) с фиксированной частотой преобразования, специально спроектированных для построения любых типов импульсных источников питания (согласно заявлению компании-производителя) и позволяющих до минимума сократить число необходимых внешних компонентов.

Рис. 1. Назначение выводов ИС SG2525A, SG3525A и SG3524

Это стало возможным благодаря наличию встроенного опорного источника питания (+5,1 В ±1%), возможности управления частотой работы внешней RC-цепью, длительностью интервала «мертвого» времени — одним внешним резистором, длительностью времени плавного старта — одним внешним конденсатором (вывод SOFT-START), встроенным драйверам (±200 мА) для управления внешними силовыми транзисторами или внешним маломощным трансформатором. Помимо всего вышеуказанного, в ИС предусмотрена возможность синхронизации нескольких источников от одного внешнего тактового сигнала (вывод SYNC) и защиты по току внешних силовых транзисторов (вывод SHUTDOWN). Область применения — практически любой DC/DC-конвертер малой и средней мощности (рис. 2 и рис. 3).

Рис. 2. Типовая схема включения SG3524 в составе двухтактного преобразователя со средней точкой

Рис. 3. Типовая схема включения SG3524 в составе обратноходового преобразователя

UC2842B/3B/4B/5B и UC3842B/3B/4B/5B популярная серия малогабаритных ШИМ-контроллеров с фиксированной частотой преобразования и управлением током, размещенных в 8-выводных корпусах SO и MiniDIP (рис. 4).

Рис. 4. Назначение выводов ИС серии UC2842B/3B/4B/5B и UC3842B/3B/4B/5B

Несмотря на то, что она выпускается уже около 10 лет, по-прежнему остается одной из самых востребованных серий в основном благодаря низкой стоимости и высокой надежности, отчасти благодаря простоте реализации. Предназначены для построения однотактных DC/DC-преобразователей с входным напряжением до 8,2…30 В. Наличие RC-генератора (частота работы до 500 кГц), встроенного мощного драйвера (±200 мА) для управления внешним полевым или биполярным транзистором, встроенного термостабилизированного опорного источника +5 В ± 1% позволяют строить на основе ИС этой серии обратноходовые источники питания с необходимым набором защитных функций — защита от перенапряжения на входе, защита внешнего силового транзистора по току, температурная защита ИС. Для исключения ложного срабатывания встроенного компаратора по току (Current Sense) из-за возможных помех, возникающих при переключениях внешнего силового транзистора, реализован т.н. режим блокировки компаратора (Leading Edge Blanking) на фиксированное время (около 100 нс) с моментов переключения транзистора (рис. 5).

Читайте также:  Ноутбук samsung r540 не включается монитор

Рис. 5. Структурная схема ШИМ-контроллеров серии UC2842B/3B/4B/5B и UC3842B/3B/4B/5B

Особенность серии управление по току внешнего силового транзистора, что позволяет исключить из схемы дополнительные гальванически развязанные цепи обратной связи (оптрон), что позволяет в значительной степени уменьшить габариты и стоимость конечного DC/DC-преобразователя. Кроме того, при построении маломощных преобразователей (до 3 Вт) существует возможность исключения внешнего силового транзистора и использования вместо него встроенный выходной драйвер.

L5991/L5991A — серия ШИМ-контроллеров с управлением по току, высокой частотой работы (до 1 МГц) и повышенной функциональностью (рис. 6).

Рис. 6. Назначение выводов ИС серии L5991/L5991A

К отличительным особенностям ИС этой серии относятся: мощный драйвер с выходным током до 1 А для управления мощным полевым транзистором, программируемый плавный запуск, возможность синхронизации как по входу (Slave), так и по выходу (Master), вход отключения с сокращением тока потребления до 120 мкА, возможность ограничения максимальной скважности внешними RC-цепями, наличие режима Standby, повышающего экономичность (работа с малой нагрузкой или без нее). Серия создана для построения мощных обратноходовых DC/DC-преобразователей.

Для исключения ложного срабатывания встроенного компаратора по току (Current Sense) из-за возможных помех, возникающих при переключениях внешнего силового транзистора, реализован т.н. режим блокировки компаратора (Leading Edge Blanking) на фиксированное время (около 100 нс) с моментов переключения транзистора (рис. 7).

Рис. 7. Структурная схема ШИМ-контроллеров L5991/L5991A

L6566A/L6566B/L6668 серия многофункциональных ШИМ-контроллеров, специально спроектированных для работы в составе обратноходовых импульсных преобразователей напряжения средней и высокой мощности (рис. 7). Отличительные особенности ИС: два режима работы по выбору — режим с фиксированной частотой (Fixed Frequency — FF) и квазирезонансный режим (Quasi-resonant — QR). Частота работы в режиме с фиксированной частотой, которая определяется номиналами внешней RC-цепи. Дополнительный вход FMOD позволяет работать в режиме модуляции частоты, что позволяет уменьшить помехи от работы источника. В ИС встроен источник питания с высоковольтным входом, предназначенный для начального запуска.

Отдельно стоить отметить особенности работы ИС в квазирезонансном режиме, в котором источник работает на гране режимов непрерывного и прерывистого тока. Для этой цели в силовом трансформаторе должна быть предусмотрена дополнительная обмотка, предназначенная для точного определения момента открытия силового транзистора. В этом режиме достигается максимальная эффективность преобразователя: на малых нагрузках частота работы низкая, а потери на силовом транзисторе минимальны. На средней и большой нагрузке частота работы увеличивается до заданной частоты, определяемой внешней RC-цепью.

L6566A/L6566B/L6668 прежде всего ориентированы на применение в составе одно- и многоканальных AC/DC-преобразователей средней и высокой мощности (рис. 8). Основными приложениями являются внешние блоки питания ноутбуков, бытовой техники, встраиваемые источники питания для промышленной аппаратуры и т.п.

Рис. 8. Типовая схема включения L6668 в составе обратноходового AC/DC-преобразователя

Заключение

На сегодняшний момент семейства ШИМ-контроллеров компании STMicroelectronics уверенно и прочно заняли нишу в ряду недорогих надежных многофункциональных, и в то же время простых в эксплуатации импульсных источников питания малой, средней и большой мощности. В большинстве своем их можно встретить как в обычной бытовой технике (компьютеры, ноутбуки, DVD-проирыватели, ЖК-телевизоры и мониторы и т.п.), так и в сложной промышленной и медицинской аппаратуре. Одной из причин этого стала весьма низкая цена при высокой функциональности в малогабаритных 8- и 16-выводных SO- и DIP-корпусах, высокой надежности с увеличенным жизненным циклом (согласно опыту многих разработчиков). Большая популярность некоторых серий, сохраняющаяся вот уже более десяти лет, дает определенную гарантию производителям источников питания, что ШИМ-контроллеры от STMicroelectronics не будут сняты с производства еще долгие годы.

Получение технической информации, заказ образцов, поставка —
e-mail: analog.vesti@compel.ru

TI анонсировала новые DSP

Моделирование системы и первоначальная реализация алгоритма в большинстве случаев производится на базе арифметики с плавающей точкой. После чего, отлаженный алгоритм загружается на микроконтроллер или цифровой сигнальный процессор с фиксированной точкой. Процессоры с плавающей точкой используются только в приложениях, требующих высокой точности и производительности, где цена конечного устройства не критична.

Для таких приложений компания Texas Instruments выпустила цифровые сигнальные процессоры с плавающей точкой TMS320F28335, TMS320F28334, TMS320F28332. Но, как и раньше, не остановилась на этом. Появились новые DSP TMS320F2823x с фиксированной точкой, которые программно и аппаратно совместимы с процессорами с плавающей точкой TMS320F2833x.

Теперь пользователи могут моделировать систему, отлаживать ее на платформе с плавающей точкой (TMS320F2833x), а затем просто перекомпилировать полученный программный код под TMS320F2823x, сократив тем самым время разработки (время загрузки приложения на платформу с фиксированной точкой) и стоимость конечного устройства.

Серийное производство TMS320F2823x и TMS320F2833x начнется во втором квартале 2008 года.

Наимено-
вание
МГц Flash,
кБ
ОЗУ,
кБ
TMS320F28235 150 512 68
TMS320F28234 150 256 68
TMS320F28232 100 128 52

TI раскрывает подробности своего 45-нм техпроцесса

Компания Texas Instruments (TI) готова к серийному выпуску своих первых 45-нанометровых микросхем. Переход к нормам 45 нм, как утверждается, позволил снизить энергопотребление чипов на 63% и повысить производительность на 55% по сравнению с 65-нанометровыми продуктами

В настоящее время TI отгружает ознакомительные образцы первого 45-нанометрового процессора для устройств с поддержкой сетей 3.5G. В производстве новинки применяется напряженный кремний, иммерсионная литография и диэлектрики со сверхмалым значением диэлектрической постоянной (ultra-low K).

Указанный процессор позволит выпускать более компактные и легкие устройства для сетей 3.5G.

Раньше для питания устройств использовали схему с понижающим (или повышающим, или многообмоточным) трансформатором, диодным мостом, фильтром для сглаживания пульсаций. Для стабилизации использовались линейные схемы на параметрических или интегральных стабилизаторах. Главным недостатком был низкий КПД и большой вес и габариты мощных блоков питания.

Во всех современных бытовых электроприборах используются импульсные блоки питания (ИБП, ИИП – одно и то же). В большинстве таких блоков питания в качестве основного управляющего элемента используют ШИМ-контроллер. В этой статье мы рассмотрим его устройство и назначение.

Определение и основные преимущества

ШИМ-контроллер – это устройство, которое содержит в себе ряд схемотехнических решений для управления силовыми ключами. При этом управление происходит на основании информации полученной по цепям обратной связи по току или напряжению – это нужно для стабилизации выходных параметров.

Иногда, ШИМ-контроллерами называются генераторы ШИМ-импульсов, но в них нет возможности подключить цепи обратной связи, и они подходят скорее для регуляторов напряжения, чем для обеспечения стабильного питания приборов. Однако в литературе и интернет-порталах часто можно встретить названия типа «ШИМ-контроллер, на NE555» или «… на ардуино» — это не совсем верно по вышеуказанным причинам, они могут использоваться только для регулирования выходных параметров, но не для их стабилизации.

Аббревиатура «ШИМ» расшифровывается, как широтно-импульсная модуляция – это один из методов модуляции сигнала не за счёт величины выходного напряжения, а именно за счёт изменения ширины импульсов. В результате формируется моделируемый сигнал за счёт интегрирования импульсов с помощью C- или LC-цепей, другими словами – за счёт сглаживания.

Вывод: ШИМ-контроллер – устройство, которое управляет ШИМ-сигналом.

Основные характеристики

Для ШИМ-сигнала можно выделить две основных характеристики:

1. Частота импульсов – от этого зависит рабочая частота преобразователя. Типовыми являются частоты выше 20 кГц, фактически 40-100 кГц.

2. Коэффициент заполнения и скважность. Это две смежных величины характеризующие одно и то же. Коэффициент заполнения может обозначаться буквой S, а скважность D.

где T – это период сигнала,

Коэффициент заполнения – часть времени от периода, когда на выходе контроллера формируется управляющий сигнал, всегда меньше 1. Скважность всегда больше 1. При частоте 100 кГц период сигнала равен 10 мкс, а ключ открыт в течении 2.5 мкс, то коэффициент заполнения – 0.25, в процентах – 25%, а скважность равна 4.

Также важно учитывать внутреннюю конструкцию и предназначение по количеству управляемых ключей.

Отличия от линейных схем потери

Как уже было сказано, преимуществом перед линейными схемами у импульсных источников питания является высокий КПД (больше 80, а в настоящее время и 90%). Это обусловлено следующим:

Допустим сглаженное напряжение после диодного моста равно 15В, ток нагрузки 1А. Вам нужно получить стабилизированное питание напряжением 12В. Фактически линейный стабилизатор представляет собой сопротивление, которое изменяет свою величину в зависимости от величины входного напряжения для получения номинального выходного – с небольшими отклонениями (доли вольт) при изменениях входного (единицы и десятки вольт).

На резисторах, как известно, при протекании через них электрического тока выделяется тепловая энергия. На линейных стабилизаторах происходит такой же процесс. Выделенная мощность будет равна:

Так как в рассмотренном примере ток нагрузки 1А, входное напряжение 15В, а выходное – 12В, то рассчитаем потери и КПД линейного стабилизатора (КРЕНка или типа L7812):

Pпотерь=(15В-12В)*1А = 3В*1А = 3Вт

Тогда КПД равен:

Если же входное напряжение вырастит до 20В, например, то КПД снизится:

Основной особенностью ШИМ является то, что силовой элемент, пусть это будет MOSFET, либо открыт полностью, либо полностью закрыт и ток через него не протекает. Поэтому потери КПД обусловлены только потерями проводимости

И потерями переключения. Это тема для отдельной статьи, поэтому не будем останавливаться на этом вопросе. Также потери блока питания возникают в выпрямительных диодах (входных и выходных, если блок питания сетевой), а также на проводниках, пассивных элементах фильтра и прочем.

Общая структура

Рассмотрим общую структуру абстрактного ШИМ-контроллер. Я употребил слово "абстрактного" потому что, в общем, все они похожи, но их функционал все же может отличаться в определенных пределах, соответственно будет отличаться структура и выводы.

Внутри ШИМ-контроллера, как и в любой другой ИМС находится полупроводниковый кристалл, на котором расположена сложная схема. В состав контроллера входят следующие функциональные узлы:

Читайте также:  Asus ex a320m gaming

1. Генератор импульсов.

2. Источник опорного напряжения. (ИОН)

3. Цепи для обработки сигнала обратной связи (ОС): усилитель ошибки, компаратор.

4. Генератор импульсов управляет встроенными транзисторами, которые предназначены для управления силовым ключом или ключами.

Количество силовых ключей, которыми может управлять ШИМ-контроллер, зависит от его предназначения. Простейшие обратноходовые преобразователи в своей схеме содержат 1 силовой ключ, полумостовые схемы (push-pull) — 2 ключа, мостовые — 4.

От типа ключа также зависит выбор ШИМ-контроллера. Для управления биполярным транзистором основным требованием является, чтобы выходной ток управления ШИМ-контроллера не был ниже, чем ток транзистора деленный на H21э, чтобы его включать и отключать достаточно просто подавать импульсы на базу. В этом случае подойдет большинство контроллеров.

В случае управления ключами с изолированным затвором (MOSFET, IGBT) есть определенные нюансы. Для быстрого отключения нужно разрядить емкость затвора. Для этого выходную цепь затвора выполняют из двух ключей — один из них соединен с источником питания с выводом ИМС и управляет затвором (включает транзистор), а второй установлен между выходом и землей, когда нужно отключить силовой транзистор — первый ключ закрывается, второй открывается, замыкая затвор на землю и разряжает его.

В некоторых ШИМ-контроллрах для маломощных блоков питания (до 50 Вт) силовые ключи встроенные и внешние не используются. Пример — 5l0830R

Если говорить обобщенно, то ШИМ-контроллер можно представить в виде компаратора, на один вход которого подан сигнал с цепи обратной связи (ОС), а на второй вход пилообразный изменяющийся сигнал. Когда пилообразный сигнал достигает и превышает по величине сигнал ОС, то на выходе компаратора возникает импульс.

При изменениях сигналов на входах ширина импульсов меняется. Допустим, что вы подключили мощный потребитель к блоку питания, и на его выходе напряжение просело, тогда напряжение ОС также упадет. Тогда в большей части периода будет наблюдаться превышение пилообразного сигнала над сигналом ОС, и ширина импульсов увеличится. Всё вышесказанное в определенной мере отражено на графиках.

Рабочая частота генератора устанавливается с помощью частотозадающей RC-цепи.

Функциональная схема ШИМ-контроллера на примере TL494, мы рассмотрим его позже подробнее. Назначение выводов и отдельных узлов описано в следующем подзаголовке.

Назначение выводов

ШИМ-контроллеры выпускаются в различных корпусах. Выводов у них может быть от трех до 16 и более. Соответственно от количества выводов, а вернее их назначения зависит гибкость использования контроллера. Например, в популярной микросхеме UC3843 — чаще всего 8 выводов, а в еще более культовой — TL494 — 16 или 24.

Поэтому рассмотрим типовые названия выводов и их назначение:

GND – общий вывод соединяется с минусом схемы или с землей.

Uc (Vc) – питание микросхемы.

Ucc (Vss, Vcc) – Вывод для контроля питания. Если питание проседает, то возникает вероятность того, что силовые ключи не будут полностью открываться, а из-за этого начнут греться и сгорят. Вывод нужен чтобы отключить контроллер в подобной ситуации.

OUT – как видно из название — это выход контроллера. Здесь выводятся управляющий ШИМ-сигнал для силовых ключей. Выше мы упомянули, что в преобразователях разных топологий имеют разное количество ключей. Название вывода может отличаться в зависимости от этого. Например, в контроллерах для полумостовых схем он может называться HO и LO для верхнего и нижнего ключа соответственно. При этом и выход может быть однотактный и двухтактный (с одним ключем и двумя) — для управления полевыми транзисторами (пояснение см. выше). Но и сам контроллер может быть для однотактной и двухтактной схемы — с одним и двумя выходными выводами соответственно. Это важно.

Vref – опорное напряжения, обычно соединяется с землей через небольшой конденсатор (единицы микрофарад).

ILIM – сигнал с датчика тока. Нужен для ограничения выходного тока. Соединяется с цепями обратной связи.

ILIMREF – на ней устанавливается напряжение срабатывания ножки ILIM

SS – формируется сигнал для мягкого старта контроллера. Предназначен для плавного выхода на номинальный режим. Между ней и общим проводом для обеспечения плавного пуска устанавливают конденсатор.

RtCt – выводы для подключения времязадающей RC-цепи, которая определяет частоту ШИМ-сигнала.

CLOCK – тактовые импульсы для синхронизации нескольких ШИМ-контроллеров между собой тогда RC-цепь подключается только к ведущему контроллеру, а RT ведомых с Vref, CT ведомых соединяюся с общим.

RAMP – это ввод сравнения. На него подают пилообразное напряжение, например с вывода Ct, Когда оно превышает значение напряжение на выходе усиления ошибки, то на OUT появляется отключающий импульс — основа для ШИМ-регулирования.

INV и NONINV – это инвертирующий и неинвертирующий входы компаратора, на котором построен усилитель ошибки. Простыми словами: чем больше напряжении на INV — тем длинее выходные импульсы и наоборот. К нему подключается сигнал с делителя напряжения в цепи обратной связи с выхода. Тогда неинвертирующий вход NONINV подключают к общему проводу — GND.

EAOUT или Error Amplifier Output рус. Выход усилителя ошибки. Не смотря на то, что есть входы усилителя ошибки и с их помощью, в принципе можно регулировать выходные параметры, но контроллер довольно медленно на это реагирует. В результате медленной реакции может возникнуть возбуждение схемы, и она выйдет из строя. Поэтому с этого вывода через частотозависимые цепи подают сигналы на INV. Это еще называется частотной коррекцией усилителя ошибки.

Примеры реальных устройств

Для закрепления информации давайте рассмотрим несколько примеров типовых ШИМ-контроллеров и их схем включения. Мы будем делать это на примере двух микросхем:

TL494 (её аналоги: KA7500B, КР1114ЕУ4, Sharp IR3M02, UA494, Fujitsu MB3759);

Они активно используются в блоках питания для компьютеров. Кстати, эти блоки питания обладают немалой мощностью (100 Вт и больше по 12В шине). Часто используются в качестве донора для переделки под лабораторный блок питания или универсальное мощное зарядное устройство, например для автомобильных аккумуляторов.

TL494 – обзор

Начнем с 494-й микросхемы. Её технические характеристики:

В этом конкретном примере можно видеть большинство описанных выше выводов:

1. Неинвертирующий вход первого компаратора ошибки

2. Инвертирующий вход первого компаратора ошибки

3. Вход обратной связи

4. Вход регулировки мертвого времени

5. Вывод для подключения внешнего времязадающего конденсатора

6. Вывод для подключения времязадающего резистора

7. Общий вывод микросхемы, минус питания

8. Вывод коллектора первого выходного транзистора

9. Вывод эмиттера первого выходного транзистора

10. Вывод эмиттера второго выходного транзистора

11. Вывод коллектора второго выходного транзистора

12. Вход подачи питающего напряжения

13. Вход выбора однотактного или же двухтактного режима работы микросхемы

14. Вывод встроенного источника опорного напряжения 5 вольт

15. Инвертирующий вход второго компаратора ошибки

16. Неинвертирующий вход второго компаратора ошибки

На рисунке ниже изображен пример компьютерного блока питания на этой микросхеме.

UC3843 — обзор

Другой популярной ШИМ является микросхема 3843 – на ней также строятся компьютерные и не только блоки питания. Её цоколевка расположена ниже, как вы можете наблюдать, у неё всего 8 выводов, но функции она выполняет те же, что и предыдущая ИМС.

Бывает UC3843 и в 14-ногом корпусе, но встречаются гораздо реже. Обратите внимание на маркировку – дополнительные выводы либо дублируются, либо незадействованы (NC).

Расшифруем назначением выводов:

1. Вход компаратора (усилителя ошибки).

2. Вход напряжения обратной связи. Это напряжение сравнивается с опорным внутри ИМС.

3. Датчик тока. Подключается к резистору стоящему в между силовым транзистором и общим проводом. Нужен для защиты от перегрузок.

4. Времязадающая RC-цепь. С её помощью задаётся рабочая частота ИМС.

6. Выход. Управляющее напряжение. Подключается к затвору транзистора, здесь двухтактный выходной каскад для управления однотактным преобразователем (одним транзистором), что можно наблюдать на рисунке ниже.

7. Напряжение питания микросхемы.

8. Выход источника опорного напряжения (5В, 50 мА).

Её внутренняя структура.

Можно убедится, что во многом похожа и на другие ШИМ-контроллеры.

Простая схема сетевого источника питания на UC3842

ШИМ со встроенным силовым ключем

ШИМ-контроллеры со встроенным силовым ключем используются как в трансформаторных импульсных блоках питания, так и в бестрансформаторных DC-DC преобразователях понижающего (Buck), повышающего (Boost) и понижающее-повышающего (Buck-Boost) типов.

Пожалуй, одним из наиболее удачных примеров будет распространенная микросхема LM2596, на базе которого на рынке можно найти массу таких преобразователей, как изображен ниже.

Такая микросхема содержит в себе все вышеописанные технические решения, а также вместо выходного каскада на маломощных ключах в ней встроен силовой ключ, способный выдержать ток до 3А. Ниже изображена внутренняя структура такого преобразователя.

Можно убедиться, что в сущности особых отличий от рассмотренных в ней нет.

А вот пример трансформаторного блока питания для светодиодной ленты на подобном контроллере, как видите силового ключа нет, а только микросхема 5L0380R с четырьмя выводами. Отсюда следует, что в определенных задачах сложная схемотехника и гибкость TL494 просто не нужна. Это справедливо для маломощных блоков питания, где нет особых требований к шумам и помехам, а выходные пульсации можно погасить LC-фильтром. Это блок питания для светодиодных лент, ноутбуков, DVD-плееров и прочее.

Заключение

В начале статьи было сказано о том, что ШИМ-контроллер это устройство которое моделирует среднее значение напряжения за счет изменения ширина импульсов на основании сигнала с цепи обратной связи. Отмечу, что названия и классификация у каждого автора часто отличается, иногда ШИМ-контроллером называют простой ШИМ-регулятор напряжения, а описанное в этой статьей семейство электронных микросхем называют «Интегральная подсистема для импульсных стабилизированных преобразователей». От названия суть не меняется, но возникают споры и недопонимания.

Ссылка на основную публикацию
Adblock detector