Современные системы передачи электроэнергии неравномерность нагрузки

Современные системы передачи электроэнергии неравномерность нагрузки

Основу системы передачи электрической энергии от электрических станций, ее производящих, о крупных районов электропотребления и распределительных узлов ЭЭС составляют различные сети электропередач или отдельные электропередачи внутрисистемного и межсистемного значения (системообразующие сети) и питающие сети напряжением 220 кВ и выше. Их появление вызвано необходимостью размещения крупных ТЭС и АЭС за пределами жилых зон, а так же возможностью выработки части ЭЭ гидроэлектростанциями, расположенными на относительно удаленным расстоянии от городов. Внутрисистемные и межсистемные магистральные линии электропередачи, включая дальние (протяженные) ЛЭП, объединяющие на совместную (параллельную) работу электростанции и более крупные подстанции (районы потребления), составляет системообразующую сеть. Назначение такой сети – формирование ЭЭС и одновременно выполнение функции передачи, транзита электрической энергии.

Одним из основным требований, предъявляемых к таким передающим и связующим сетям, является обеспечение надежности и устойчивости их работы, т.е. обеспечение ее работоспособности во всех возможных состояниях (режимах) – нормальных, ремонтных, аварийных и послеаварийных. Решение этой задачи в значительной мере возлагается на большой комплекс автоматических устройств: управление релейной защиты, режимной и противоаварийной автоматики. Совокупность магистральных и системообразующих (передающих) электрических сетей и устройств автоматического регулирования образуют систему передачи электрической энергии.

Приведем краткую характеристику такой системы по ряду показателей, к которым в первую очередь относятся величины передаваемой мощности, номинального напряжения, функциональное значение и дальность передачи, конфигурация (топология) сети.

Системообразующая сеть, является основной сетью энергосистем, предназначена для передачи больших потоков мощности ( от сотен МВт до нескольких ГВт) отдельным потребителям (расстояние до 1000 км и более)и выполняется в основном магистральными линиями электропередачи на переменном токе. Межсистемные линии электропередачи сооружают обычно на напряжение более высокое, чем напряжение внутрисистемных линий соединяемых систем, и включают трансформаторные подстанции по концам. Межсистемные передачи ЭЭ переменным током осуществляется преимущественно на напряжение 500 и 750 кВ. Напряжение 500 кВ используется для системообразующих сетей в энергосистемах со шкалой номинальных напряжений сетей 110-220-500-1150 кВ и напряжение 750 кВ в ОЭС со шкалой 150-330-750 кВ, в которой в качестве следующей ступени возможно напряжение 1800 кВ.

Сети этих напряжений служат для выдачи мощности крупных электростанций, создания межсистемных связей и питания нагрузочных узлов 550/220, 500/110, 330/110 (150) кВ, а в некоторых ЭЭС — линии 220 кВ, используются для внутрисистемных связей: выдачи мощности и связи крупных электростанций, для питания и объединения центров электроснабжения 330/110 (150), 220/110 систем распределения электроэнергии. В мощных концентрированных ЭЭС с развитой сетью 500 кВ сети 220 кВ выполняют, как правило распределительные функции.

Линии электропередачи, передающие потоки равными мощностями группы генераторов или соизмеримыми с установленной мощностью энергосистем, относятся к сильным связям. При пропускной способности, не превышающей 10-15% от установленной мощности меньшей из объединяемых энергосистем, связь между ними характеризуются как слабая. По этим связям практически проводят границу между отдельными ЭЭС.

Если одна из энергосистем постоянно располагает избыточной по балансу мощностью и энергией, стоимость которой ниже, чем в другой энергосистеме, то межсистемная ЛЭП работает с неизменным направлением потока мощности.

Линию электропередачи с переменным направлением потока называют реверсивной (маневренной). Ее роль состоит главным образом во взаимопомощи между соседними сравнительно мощными системами. Различие между магистралями и реверсивными связями часто очень неопределенной.

Условность деления системы передачи и распределения электрической энергии на основные электрические сети, т.е. протяженные (дальние) электропередачи, системообразующие сети и системы распределения электрической энергии по их номинальному напряжению. По мере развития основных сетей (роста нагрузок и присоединения понижающей подстанции, появление новых генерирующих источников и охвата территории электрическими системами) они в большей мере выполняют функцию распределения электроэнергии. Это означает, что сети, выполняющие функцию передающих, системообразующих, с появлением в энергосистемах сетей более высокого напряжения постепенно “передают” им эти функции, превращаясь в распределительные.

Номинальное напряжение линии электропередачи зависит от передаваемой мощности, количества цепей и расстояния (дальности), нат которое передается электроэнергия . Выбор номинальных напряжений выполняют на этапе проектирования систем передачи ЭЭ. В данном случае необходимо отметить, что чем больше передаваемая мощность и протяженность линии, тем выше по техническим и экономических причинам должно быть номинальное напряжение электропередачи. На современном этапе развития ЭЭС ориентировочная передаваемая мощность и длинна линии электропередачи в зависимости от класса напряжения характеризуется данными приведенными в таблице 1.

Таблица 1. Передаваемая мощность и дальность передачи

Напряжение линии, кВ Количество проводов в фазах и наиболее применяемые площади сечений, мм 2 Передаваемая мощность, МВт Длинна линии электропередачи, км
натуральная При плотности тока 1,1 А/мм 2 Предельная КПД, равном 0,90 Средняя между соседними подстанциями
240-400 90-150
2х240-2х400 270-450
3х330-3х500 770-1300
5х300-5х400 1500-2000
8х300-8х500 4000-6000

Передача мощности от удаленных электростанций на первых этапах развития межсистемных межсистемной связи выполняются в виде неразветвленной электропередачи напряжением (330) 500 1150 кВ (рисунок 1). Мощные КЭС или ГЭС имеют блочную схему. К каждому трансформатору присоединяют от одного до трех генераторов, отдающих энергию на шины 500-150 кВ. Далее энергия передается по длинной линии, через понижающую подстанцию в приемную систему, часть нагрузки которой обеспечивается собственными генерирующими станциями (рис. 1)

Если на станции несколько блоков и связующая линия многоцепная, то электропередачи могут выполняться на основе блочной или связной схем. В блочной схеме (рисунок 2) дальняя передача мощности осуществляется по отдельным поперечно не связанным электропередачам (блокам) на общую группу шин (подстанций) приемной системы, соединенных между собой связями 110-220 кВ.

Эти связи и станции приемной системы должны удовлетворять потребность мощности в случае выхода из строя какого-либо блока. При отключении цепи (блока) авария локализуется на одной из станции, однако приемная система полностью лишается соответствующей части мощности передающей станции. В связанной схеме (рисунок 3) обеспечивающей большую надежность электроснабжения, многоцепная дальняя ЛЭП имеет вдоль своей трассы несколько соединений – переключательных пунктов (ПП) – между отдельными цепями, делящими длинную линию на короткие участки (250-350 км). Сооружение ПП сопровождается возрастанием количества применяемых дорогостоящих выключателей. Отключение отдельной линии участка сети между переключательными пунктами незначительно увеличивает суммарное сопротивление, что позволяет сохранить передачу заданной мощности по передаче мощности или пропускной способности электропередачи.

Под пропускной способностью электропередачи понимается наибольшая активная мощность трех фаз электропередачи, которую можно передать в длительном установившемся режиме с учетом режимно–технических ограничений. Наибольшая передаваемая активная мощность (предел) электропередачи ограничена условиями статической устойчивости генераторов электрических станций, передающей и приемной части ЭЭС, связанных электропередачей с номинальным напряжением Uном:

(1)

и допустимой мощностью по нагреву проводов линии с допустимым током Iдоп:

(2)

где Е и U -ЭДС генераторов предающей станции и напряжения приемной системы; и — результирующие (суммарное) индуктивное сопротивление и коэффициент мощности электропередачи.

Из практики эксплуатации ЭЭС следует, что пропускная способность электропередач 500-750 кВ обычно определяется фактором статической устойчивости, для электропередач 220-330 кВ ограничения могут наступать как по условию устойчивости, так и по допустимому нагреву.

Характерные данные о пропускной способности линии электропередачи приведены в таблицу 2

Таблица 2. Характеристика пропускной способности линий электропередачи

Uном, кВ Длинна линии Число и площадь сечения проводов, мм Натуральная мощность Р нат МВт Пропускная способность
По устойчивости По нагреву
МВт в долях по Рнат МВт в долях по Рнат
150-250 1х300 2,9 2,3
200-300 2х300 2,3 2,2
300-400 3х300 1,5 1,9
400-500 5х300 1,2 2,1
400-500 8х300 0,85 2,1

Обеспечение необходимой пропускной способности электропередачи при удовлетворительных экономических показателях представляет наибольшую техническую трудность.

На дальних ЛЭП используют наиболее высокие из освоенных номинальных напряжений: 500,750 кВ. В ближайшем будущем планируется широко применять напряжение 1150кВ. При более высоком напряжении, как следует из выражения (1), увеличивается предельная мощность электропередачи; наряду с этим снижаются потери мощности и энергии в активном сопротивлении линии. Одновременно возрастает стоимость ВЛ и оборудования подстанций, потери энергии на корону и емкостный ток линии.

Снижение суммарного реактивного сопротивления электропередачи, включающего сопротивление генераторов, так же повышает предел мощности по статической устойчивости. При снижении реактивного сопротивления уменьшаются потери напряжения, но возрастает величина тока короткого замыкания, для отключения которого необходимы более мощные и дорогие выключатели. Суммарное реактивное сопротивление уменьшают за счет применения на удаленной станции генераторов с пониженной величиной синхронного сопротивления и трансформаторов на повышающей подстанции, имеющей сниженное напряжение короткого замыкания и сопротивления. На понижающей подстанции в конце электропередачи устанавливают автотрансформаторы, сопротивление которых меньше, чем у трансформаторов. Расщепление фазы на несколько проводов и совершенствование конструкции расщепленных фаз и конструкции опор линий снижают индуктивность и индуктивное сопротивление линий (примерно на 25-35%), повышают ее натуральную мощность и критическое напряжение короны. При этом усложняется конструкция линий и увеличивается ее стоимость. Возрастание емкости линии при расщеплении вызывает нежелательное увеличение емкостного тока и соответственно ему мощности. Данные о количестве проводов в фазах линий приведены в таблице 2. На ВЛ 220 кВ в редких случаях фаза состоит из двух проводов.

Дальнейшее увеличение предела передаваемой мощности достигается с помощью специальных мер по изменению (компенсации) параметров линий, которые в этом случае именуются компенсированными. Снижение индуктивного сопротивления достигается за счет последовательного включения в линию конденсаторных установок продольной компенсации (УПК), которые повышают стоимость ЛЭП и увеличивают токи короткого замыкания.

Читайте также:  Телевизор панасоник страна производитель

Большой емкостной ток дольних линий при сниженной нагрузке вызывает дополнительные потери активной мощности или недопустимое распределение энергии в пунктах линии, а также снижение реактивной нагрузки, ЭДС и устойчивости генераторов удаленной станции. Поэтому емкостной ток и соответствующую проводимость линии компенсируют включением на шины высшего напряжения удаленной электростанции и в переключательных пунктах линии установок (реакторов) поперечной компенсации (РПК). При нагрузках, близких к натуральным, РПК отключают. По размерам стоимости РПК близки к трансформаторам соответствующего напряжения и мощности и потребляют электроэнергию. Капитальные вложения в ЛЭП увеличивается также за счет применения дополнительных выключателей для РПК.

Установка устройств продольной и поперечной компенсации по воздействию на режим электропередачи соответствует уменьшению ее длины по сравнению с некомпенсированной электропередачей. При определенных параметрах и расположении УПК эквивалентное продольное сопротивление линий становится активным. Емкостной ток линии возможно полностью компенсировать посредствам РПК. По эквивалентным реактивным параметрам такая компенсированная линия имеет нулевую длину, то есть длину, кратную целому количеству полуволн.

На рисунке 4 изображена упрощенная схема компенсированной ЛЭП 500 кВ повышенной пропускной способности.

По длинной компенсированной линии при максимальной нагрузке экономически нецелесообразно передавать реактивную мощность. Для ее регулирования на приемной подстанции и в некоторых случаях на промежуточных подстанциях или ПП устанавливают источники реактивной мощности (компенсирующие устройства)- синхронные, статические теристорные компенсаторы.

Указанные мероприятия по повышению пропускной способности электропередачи являются достаточно долгими. Опыт, показал, что при возникновении новых промышленных районов более целесообразным является сооружение линии электропередачи с промежуточными подстанциями, включенными вдоль нее. Подстанции могут совмещаться с переключательными пунктами линии или создаваться вновь (рисунок 5, а). Такая электропередача обладает большой устойчивостью, не требует установки реакторов и т.п. стоимость ЛЭП снижается.

На рисунке 5 изображены упрощенные схемы электропередачи 500 кВ с включенными вдоль линии промежуточными подстанциями ПС1-ПС3. Для повышения устойчивости электропередачи в линию включают последовательно конденсаторы (УПК) (рис. 5,а) или компенсаторы (синхронные или статические) на промежуточных подстанциях (рисунок 5, б)

Наряду с отмеченными, применяют устройства автоматического регулирования: автоматическое регулирование возбуждения генераторов и синхронных компенсаторов, быстродействующее регулирование мощности турбин, регулирование напряжения по концам электропередачи, быстродействующие выключатели и релейную защиту и др., что способствует повышению устойчивости и пропускной способности электропередачи.

Рассмотренные схемы линий электропередачи (рис. 1-5) позволяют доставить электроэнергию потребителям от двух генерирующих источников и называются электропередачами с двусторонним питанием. По мере развития передающей сети в промежуточных пунктах магистральной сети наряду с понижающими подстанциями подключается отдельная линия электропередачи, имеющая генерирующие источники, с оборотом или выдачей мощности (рис. 6). В итоге формируется узловая система с тремя центрами питания и более высокой устойчивостью и пропускной способностью. В дальнейшем магистральные системообразующие сети, присоединены к двум-трем центрам питания, усложняются и преобразуются в замкнутые многоконтурные передающие сети с сосредоточенными нагрузками (рис. 7). Замкнутые сети обеспечивают наибольшую надежность, поскольку авария (отключение) на каком-либо участке сети имеет последствия (например, ограничение потребляемой мощности) только для потребителей, непосредственно подключенных к этому участку.

В системах передачи электроэнергии с сосредоточенными нагрузками непрерывность электроснабжения не может быть нарушена отдельной аварией, т.к. электроснабжение подстанций ПС1-ПС4 (центров питания распределительных сетей 6-220 кВ) осуществляется по двум и более линиям от нескольких независимых источников. Однако в замкнутых сетях более сложна, чем в разомкнутых релейная защита и автоматика.

Внутрисистемные передачи электроэнергии, осуществляемые магистральными одно-двухцепными воздушными линиями220-330 кВ, обеспечивают связь отдельно расположенных электростанций и центров питания 6-220 кВ распределительных сетей.

Не нашли то, что искали? Воспользуйтесь поиском:

Основу системы передачи электрической энергии от электрических станций, ее производящих, о крупных районов электропотребления и распределительных узлов ЭЭС составляют различные сети электропередач или отдельные электропередачи внутрисистемного и межсистемного значения (системообразующие сети) и питающие сети напряжением 220 кВ и выше. Их появление вызвано необходимостью размещения крупных ТЭС и АЭС за пределами жилых зон, а так же возможностью выработки части ЭЭ гидроэлектростанциями, расположенными на относительно удаленным расстоянии от городов. Внутрисистемные и межсистемные магистральные линии электропередачи, включая дальние (протяженные) ЛЭП, объединяющие на совместную (параллельную) работу электростанции и более крупные подстанции (районы потребления), составляет системообразующую сеть. Назначение такой сети – формирование ЭЭС и одновременно выполнение функции передачи, транзита электрической энергии.

Одним из основным требований, предъявляемых к таким передающим и связующим сетям, является обеспечение надежности и устойчивости их работы, т.е. обеспечение ее работоспособности во всех возможных состояниях (режимах) – нормальных, ремонтных, аварийных и послеаварийных. Решение этой задачи в значительной мере возлагается на большой комплекс автоматических устройств: управление релейной защиты, режимной и противоаварийной автоматики. Совокупность магистральных и системообразующих (передающих) электрических сетей и устройств автоматического регулирования образуют систему передачи электрической энергии.

Приведем краткую характеристику такой системы по ряду показателей, к которым в первую очередь относятся величины передаваемой мощности, номинального напряжения, функциональное значение и дальность передачи, конфигурация (топология) сети.

Системообразующая сеть, является основной сетью энергосистем, предназначена для передачи больших потоков мощности ( от сотен МВт до нескольких ГВт) отдельным потребителям (расстояние до 1000 км и более)и выполняется в основном магистральными линиями электропередачи на переменном токе. Межсистемные линии электропередачи сооружают обычно на напряжение более высокое, чем напряжение внутрисистемных линий соединяемых систем, и включают трансформаторные подстанции по концам. Межсистемные передачи ЭЭ переменным током осуществляется преимущественно на напряжение 500 и 750 кВ. Напряжение 500 кВ используется для системообразующих сетей в энергосистемах со шкалой номинальных напряжений сетей 110-220-500-1150 кВ и напряжение 750 кВ в ОЭС со шкалой 150-330-750 кВ, в которой в качестве следующей ступени возможно напряжение 1800 кВ.

Сети этих напряжений служат для выдачи мощности крупных электростанций, создания межсистемных связей и питания нагрузочных узлов 550/220, 500/110, 330/110 (150) кВ, а в некоторых ЭЭС — линии 220 кВ, используются для внутрисистемных связей: выдачи мощности и связи крупных электростанций, для питания и объединения центров электроснабжения 330/110 (150), 220/110 систем распределения электроэнергии. В мощных концентрированных ЭЭС с развитой сетью 500 кВ сети 220 кВ выполняют, как правило распределительные функции.

Линии электропередачи, передающие потоки равными мощностями группы генераторов или соизмеримыми с установленной мощностью энергосистем, относятся к сильным связям. При пропускной способности, не превышающей 10-15% от установленной мощности меньшей из объединяемых энергосистем, связь между ними характеризуются как слабая. По этим связям практически проводят границу между отдельными ЭЭС.

Если одна из энергосистем постоянно располагает избыточной по балансу мощностью и энергией, стоимость которой ниже, чем в другой энергосистеме, то межсистемная ЛЭП работает с неизменным направлением потока мощности.

Линию электропередачи с переменным направлением потока называют реверсивной (маневренной). Ее роль состоит главным образом во взаимопомощи между соседними сравнительно мощными системами. Различие между магистралями и реверсивными связями часто очень неопределенной.

Условность деления системы передачи и распределения электрической энергии на основные электрические сети, т.е. протяженные (дальние) электропередачи, системообразующие сети и системы распределения электрической энергии по их номинальному напряжению. По мере развития основных сетей (роста нагрузок и присоединения понижающей подстанции, появление новых генерирующих источников и охвата территории электрическими системами) они в большей мере выполняют функцию распределения электроэнергии. Это означает, что сети, выполняющие функцию передающих, системообразующих, с появлением в энергосистемах сетей более высокого напряжения постепенно “передают” им эти функции, превращаясь в распределительные.

Номинальное напряжение линии электропередачи зависит от передаваемой мощности, количества цепей и расстояния (дальности), нат которое передается электроэнергия . Выбор номинальных напряжений выполняют на этапе проектирования систем передачи ЭЭ. В данном случае необходимо отметить, что чем больше передаваемая мощность и протяженность линии, тем выше по техническим и экономических причинам должно быть номинальное напряжение электропередачи. На современном этапе развития ЭЭС ориентировочная передаваемая мощность и длинна линии электропередачи в зависимости от класса напряжения характеризуется данными приведенными в таблице 1.

Таблица 1. Передаваемая мощность и дальность передачи

Напряжение линии, кВ Количество проводов в фазах и наиболее применяемые площади сечений, мм 2 Передаваемая мощность, МВт Длинна линии электропередачи, км
натуральная При плотности тока 1,1 А/мм 2 Предельная КПД, равном 0,90 Средняя между соседними подстанциями
240-400 90-150
2х240-2х400 270-450
3х330-3х500 770-1300
5х300-5х400 1500-2000
8х300-8х500 4000-6000

Передача мощности от удаленных электростанций на первых этапах развития межсистемных межсистемной связи выполняются в виде неразветвленной электропередачи напряжением (330) 500 1150 кВ (рисунок 1). Мощные КЭС или ГЭС имеют блочную схему. К каждому трансформатору присоединяют от одного до трех генераторов, отдающих энергию на шины 500-150 кВ. Далее энергия передается по длинной линии, через понижающую подстанцию в приемную систему, часть нагрузки которой обеспечивается собственными генерирующими станциями (рис. 1)

Если на станции несколько блоков и связующая линия многоцепная, то электропередачи могут выполняться на основе блочной или связной схем. В блочной схеме (рисунок 2) дальняя передача мощности осуществляется по отдельным поперечно не связанным электропередачам (блокам) на общую группу шин (подстанций) приемной системы, соединенных между собой связями 110-220 кВ.

Эти связи и станции приемной системы должны удовлетворять потребность мощности в случае выхода из строя какого-либо блока. При отключении цепи (блока) авария локализуется на одной из станции, однако приемная система полностью лишается соответствующей части мощности передающей станции. В связанной схеме (рисунок 3) обеспечивающей большую надежность электроснабжения, многоцепная дальняя ЛЭП имеет вдоль своей трассы несколько соединений – переключательных пунктов (ПП) – между отдельными цепями, делящими длинную линию на короткие участки (250-350 км). Сооружение ПП сопровождается возрастанием количества применяемых дорогостоящих выключателей. Отключение отдельной линии участка сети между переключательными пунктами незначительно увеличивает суммарное сопротивление, что позволяет сохранить передачу заданной мощности по передаче мощности или пропускной способности электропередачи.

Читайте также:  Бьен ту соулс на пк

Под пропускной способностью электропередачи понимается наибольшая активная мощность трех фаз электропередачи, которую можно передать в длительном установившемся режиме с учетом режимно–технических ограничений. Наибольшая передаваемая активная мощность (предел) электропередачи ограничена условиями статической устойчивости генераторов электрических станций, передающей и приемной части ЭЭС, связанных электропередачей с номинальным напряжением Uном:

(1)

и допустимой мощностью по нагреву проводов линии с допустимым током Iдоп:

(2)

где Е и U -ЭДС генераторов предающей станции и напряжения приемной системы; и — результирующие (суммарное) индуктивное сопротивление и коэффициент мощности электропередачи.

Из практики эксплуатации ЭЭС следует, что пропускная способность электропередач 500-750 кВ обычно определяется фактором статической устойчивости, для электропередач 220-330 кВ ограничения могут наступать как по условию устойчивости, так и по допустимому нагреву.

Характерные данные о пропускной способности линии электропередачи приведены в таблицу 2

Таблица 2. Характеристика пропускной способности линий электропередачи

Uном, кВ Длинна линии Число и площадь сечения проводов, мм Натуральная мощность Р нат МВт Пропускная способность
По устойчивости По нагреву
МВт в долях по Рнат МВт в долях по Рнат
150-250 1х300 2,9 2,3
200-300 2х300 2,3 2,2
300-400 3х300 1,5 1,9
400-500 5х300 1,2 2,1
400-500 8х300 0,85 2,1

Обеспечение необходимой пропускной способности электропередачи при удовлетворительных экономических показателях представляет наибольшую техническую трудность.

На дальних ЛЭП используют наиболее высокие из освоенных номинальных напряжений: 500,750 кВ. В ближайшем будущем планируется широко применять напряжение 1150кВ. При более высоком напряжении, как следует из выражения (1), увеличивается предельная мощность электропередачи; наряду с этим снижаются потери мощности и энергии в активном сопротивлении линии. Одновременно возрастает стоимость ВЛ и оборудования подстанций, потери энергии на корону и емкостный ток линии.

Снижение суммарного реактивного сопротивления электропередачи, включающего сопротивление генераторов, так же повышает предел мощности по статической устойчивости. При снижении реактивного сопротивления уменьшаются потери напряжения, но возрастает величина тока короткого замыкания, для отключения которого необходимы более мощные и дорогие выключатели. Суммарное реактивное сопротивление уменьшают за счет применения на удаленной станции генераторов с пониженной величиной синхронного сопротивления и трансформаторов на повышающей подстанции, имеющей сниженное напряжение короткого замыкания и сопротивления. На понижающей подстанции в конце электропередачи устанавливают автотрансформаторы, сопротивление которых меньше, чем у трансформаторов. Расщепление фазы на несколько проводов и совершенствование конструкции расщепленных фаз и конструкции опор линий снижают индуктивность и индуктивное сопротивление линий (примерно на 25-35%), повышают ее натуральную мощность и критическое напряжение короны. При этом усложняется конструкция линий и увеличивается ее стоимость. Возрастание емкости линии при расщеплении вызывает нежелательное увеличение емкостного тока и соответственно ему мощности. Данные о количестве проводов в фазах линий приведены в таблице 2. На ВЛ 220 кВ в редких случаях фаза состоит из двух проводов.

Дальнейшее увеличение предела передаваемой мощности достигается с помощью специальных мер по изменению (компенсации) параметров линий, которые в этом случае именуются компенсированными. Снижение индуктивного сопротивления достигается за счет последовательного включения в линию конденсаторных установок продольной компенсации (УПК), которые повышают стоимость ЛЭП и увеличивают токи короткого замыкания.

Большой емкостной ток дольних линий при сниженной нагрузке вызывает дополнительные потери активной мощности или недопустимое распределение энергии в пунктах линии, а также снижение реактивной нагрузки, ЭДС и устойчивости генераторов удаленной станции. Поэтому емкостной ток и соответствующую проводимость линии компенсируют включением на шины высшего напряжения удаленной электростанции и в переключательных пунктах линии установок (реакторов) поперечной компенсации (РПК). При нагрузках, близких к натуральным, РПК отключают. По размерам стоимости РПК близки к трансформаторам соответствующего напряжения и мощности и потребляют электроэнергию. Капитальные вложения в ЛЭП увеличивается также за счет применения дополнительных выключателей для РПК.

Установка устройств продольной и поперечной компенсации по воздействию на режим электропередачи соответствует уменьшению ее длины по сравнению с некомпенсированной электропередачей. При определенных параметрах и расположении УПК эквивалентное продольное сопротивление линий становится активным. Емкостной ток линии возможно полностью компенсировать посредствам РПК. По эквивалентным реактивным параметрам такая компенсированная линия имеет нулевую длину, то есть длину, кратную целому количеству полуволн.

На рисунке 4 изображена упрощенная схема компенсированной ЛЭП 500 кВ повышенной пропускной способности.

По длинной компенсированной линии при максимальной нагрузке экономически нецелесообразно передавать реактивную мощность. Для ее регулирования на приемной подстанции и в некоторых случаях на промежуточных подстанциях или ПП устанавливают источники реактивной мощности (компенсирующие устройства)- синхронные, статические теристорные компенсаторы.

Указанные мероприятия по повышению пропускной способности электропередачи являются достаточно долгими. Опыт, показал, что при возникновении новых промышленных районов более целесообразным является сооружение линии электропередачи с промежуточными подстанциями, включенными вдоль нее. Подстанции могут совмещаться с переключательными пунктами линии или создаваться вновь (рисунок 5, а). Такая электропередача обладает большой устойчивостью, не требует установки реакторов и т.п. стоимость ЛЭП снижается.

На рисунке 5 изображены упрощенные схемы электропередачи 500 кВ с включенными вдоль линии промежуточными подстанциями ПС1-ПС3. Для повышения устойчивости электропередачи в линию включают последовательно конденсаторы (УПК) (рис. 5,а) или компенсаторы (синхронные или статические) на промежуточных подстанциях (рисунок 5, б)

Наряду с отмеченными, применяют устройства автоматического регулирования: автоматическое регулирование возбуждения генераторов и синхронных компенсаторов, быстродействующее регулирование мощности турбин, регулирование напряжения по концам электропередачи, быстродействующие выключатели и релейную защиту и др., что способствует повышению устойчивости и пропускной способности электропередачи.

Рассмотренные схемы линий электропередачи (рис. 1-5) позволяют доставить электроэнергию потребителям от двух генерирующих источников и называются электропередачами с двусторонним питанием. По мере развития передающей сети в промежуточных пунктах магистральной сети наряду с понижающими подстанциями подключается отдельная линия электропередачи, имеющая генерирующие источники, с оборотом или выдачей мощности (рис. 6). В итоге формируется узловая система с тремя центрами питания и более высокой устойчивостью и пропускной способностью. В дальнейшем магистральные системообразующие сети, присоединены к двум-трем центрам питания, усложняются и преобразуются в замкнутые многоконтурные передающие сети с сосредоточенными нагрузками (рис. 7). Замкнутые сети обеспечивают наибольшую надежность, поскольку авария (отключение) на каком-либо участке сети имеет последствия (например, ограничение потребляемой мощности) только для потребителей, непосредственно подключенных к этому участку.

В системах передачи электроэнергии с сосредоточенными нагрузками непрерывность электроснабжения не может быть нарушена отдельной аварией, т.к. электроснабжение подстанций ПС1-ПС4 (центров питания распределительных сетей 6-220 кВ) осуществляется по двум и более линиям от нескольких независимых источников. Однако в замкнутых сетях более сложна, чем в разомкнутых релейная защита и автоматика.

Внутрисистемные передачи электроэнергии, осуществляемые магистральными одно-двухцепными воздушными линиями220-330 кВ, обеспечивают связь отдельно расположенных электростанций и центров питания 6-220 кВ распределительных сетей.

Не нашли то, что искали? Воспользуйтесь поиском:

Разделы: Физика

Цель: показать практическое применение закона электромагнитной индукции; способы передачи электроэнергии; изучить физические основы производства и использования электрической энергии.

«Нам необыкновенно повезло, что мы живем в век, когда еще можно сделать открытия».
Р.Фейнман

Ход урока.

Сегодня наш с вами урок посвящен теме, которая занимает ум человечества ни один век — получение, передача и использование электрической энергии.

Мы рассмотрим следующие вопросы:

  1. Характеристики первичных источников электрической энергии (ветряные, солнечные, термальные, приливные, гидростанции, тепловые, атомные).
  2. Современные электрогенераторы: технические решения физических идей, параметры, тенденция совершенствования.
  3. Современные системы передачи электроэнергии: неравномерность нагрузки и приемы ее сглаживания; построение схемы распределения электрической мощности.
  4. Экологическая проблема современной энергетики.

Это было в июльские дни 1850 года, когда у витрины магазина на одной из центральных улиц Лондона Риджентстрит собралась толпа зевак. Обступив витрину, они с удивлением рассматривали модель локомотива, ведущего игрушечный поезд по двум железным полоскам рельсов. Движимый неведомой силой поезд еще и еще раз пробегал свой путь. Его двигала сила, еще кому мало известная в ту пору – электричество. (слайд 2)

«Век пара», «век электричества», «век атома» … — границы целых эпох – определяют по главному виду используемой ими энергии.

Уровнем производства и потребления энергии определяется уровень развития производительных сил общества, способность производить материальные благи.

Среди пригодных к использованию и экономически выгодных форм энергии особое место занимает электрическая энергия. Целый ряд ее преимуществ явился причиной того.(3 слайд) Что электроэнергия используется в современном обществе наиболее широко. Во-первых: электрическая энергия сравнительно легко может быть получена за счет других видов энергии (механической. внутренней, химической); во-вторых, сравнительно просто осуществить и обратный процесс; в-третьих, эту энергию можно передавать с весьма незначительными потерями на большие расстояния от места производства к месту потребления; в-четвертых, электрическая энергия легко дробится, что очень важно для ее распределения по отдельным токоприемниками.

В настоящее время нет ни одной отрасли народного хозяйства, ни одного предприятия, которые не потребляли бы электроэнергию. Электрический ток, электродвигатель проникают всюду. Решительно преобразуя производство, облегчая труд, значительно поднимая его производительность.(4 слайд)

Читайте также:  Как найти по фотке человека в инете

Энергетика настоящего и будущего – вот о чем состоится сегодня разговор.

Для того чтобы человек мог жить в благоустроенных квартирах, чтобы работали заводы, транспорт, различные средства связи и т.д., необходима энергия. На сегодняшний день основным источником энергии является минеральное топливо: нефть, газ, уголь, торф, дерево. Энергию, полученную от сгорания топлива, на электростанциях преобразуется в электрическую энергию. К традиционным источникам электроэнергии относятся тепловые (ТЭС), гидравлические (ГЭС), атомные (АЭС) станции. Рассмотрим подробно устройство каждого из этих типов станции.

Самая распространенная станция это ТЭС. Об устройстве и работе этой станции расскажет 1 группа ребят (5 слайд).

В настоящее время в нашей стране ТЭЦ дают около 40% всей производимой электроэнергии.

Людям известны и другие источники энергии, которые с успехом используется для промышленного получения электроэнергии. Это – ГЭС. В чем же заключается преимущество гидростанции по сравнению с тепловыми? На этот вопрос ответит 2 группа ребят (6 слайд).

Из всех ГЭС построенных в России, является Саянно-Шушенская ГЭС, которая вырабатывает 6400 МВт.

Однако гидравлические ресурсы ограничены и даже максимальное их использование не может покрыть все потребности в электроэнергии. Человечество нуждается в новых экономически выгодных источниках энергии. В середине ХХ века ученые разработали принципиально новый способ получения энергии – выделение энергии, запасенной внутри ядра. В результате на службе энергетики появилась атомные электростанции. О АЭС нам расскажет 3 группа ребят (7 слайд).

Специалисты считают, что в начале ХХ1 века каждому живущему человеку на Земле понадобится для нормальной жизни примерно 3-4 кВт мощности (8 слайд). Если учесть. Что население Земли составляет примерно 6 млрд человек, то необходимо вырабатываемая станциями мощность должна составлять порядка 20 млрд кВт. Для России с ее населением в 146 человек требуется около 440 млн кВт. Демографы полагают, что 2050 году население достигнет 12-14 миллиардов. Поэтому вклад атомной энергетики с каждым годом будет увеличиваться и уже к 2020 году по прогнозу специалистов составит 40-50%.

Проблема возобновляемых источников энергии становится одним из наиболее актуальных направлений устойчивого развития региона. Дело не только в ограниченности ископаемых энергоносителей, по наиболее оптимистичным прогнозам, их хватит лишь на настоящий век, и не в стремительном росте цен на углеводородсодержащее топливо. Главной причиной тревоги политиков и специалистов-экологов является необратимые последствия сжигания топлива для окружающей среды. Поэтому перед учеными встал вопрос о использовании нетрадиционных источников энергии. И следующие выступления будут посвящены этому вопросу.

Ежегодно на поверхность Земли солнечные лучи приносят более 567.1023 Дж/год , т.е. это очень много. Но используется она недостаточно по несколько причинам: малая плотность потока; зависимость притока энергии к земной поверхности от време года, суток и погодных условий. Поэтому первое выступление будет посвящено солнечным электростанциям. Солнечную энергию используют для выработки тепла и электроэнергии. (выступление уч-ся 9 слайд))

Энергия ветра колоссальна. Академик П.П.Лазарев подсчитал, что около 70% солнечной энергии. Достигающей нашей планеты. Преобразуется в энергию движения воздушных масс атмосферы. Ветер является одним из самых мощных на Земле возобновляемых энергоисточников. Ветроэнергетические ресурсы нашей страны по самым скромным оценкам составляет в год 8.1012 кВт.ч. Поэтому в места, где дует ветер, не заменимым являются ветряные электростанции. (выступление уч-ся 10 слайд)

При погружении в глубь Земли температура повышается в среднем на 10 на каждые 30 м. В местах с интенсивной вулканической деятельностью горячая подземная вода или нагретые пары и газы, находящиеся близко к поверхности, иногда под действием давления вырываются наружу Термальные подземные воды – практически неисчерпаемый источник тепловой энергии. Раньше считали, что только Исландия является страной горячих источников и гейзеров. На Камчатке есть тоже долина гейзеров, которая сейчас после схода лавины была засыпана. В таких места и строятся геотермальные электростанции. (Выступление уч-ся 11 слайд).

Величествен и прекрасен Мировой океан своеобразный громадный аккумулятор и преобразователь энергии Солнца и Луны. Независимо от условий погоды через определенный промежуток времени океан наступает на сушу. Длится это примерно 6 часов, после чего начинается спад воды, продолжающийся столько же времени. Огромная масса воды, приподнятая силой всемирного тяготения, обладает колоссальной энергией. По подсчетам ученых общая мощность составляет 7.1016кВт. У нас в России — Обская губа. На ней и была построена приливная электростанция. (Выступление уч-ся)

Мне хочется привести замечательные слова великого флорентинца Данте, которые сказаны и, пять с половиной веков назад: (12 слайд)

Пусть не напрасно греет и светит Солнце, пусть не напрасно течет вода и бьются волны о берег. Надо отнять у них бесцельно расточаемые дары природы и покорить их, связав по своему желанию.

Международная конференция по возобновляемой энергии в Бонне 2004 году собрала представителей более сотни стран – представителей правительств и парламентов, неправительственных организаций, а также специалистов. Были выявлены различные направления развития и технологические решения, которые отражали экономические и географические особенности различных континентов и регионов. Доля возобновляемых источников энергии (воды, ветра, Солнца, приливов) в энергетическом балансе стран Европейского союза составляет около 6%, 16% приходится на атомную энергию, остальное – на ископаемые энергоносители. К 2010 Европейская комиссия ориентируется на достижение 12 %, возобновляемы источники энергии .

(15 слайд) Все станции используют механическую энергию: ветра, воды, пара, Солнце и т.д. Но мы потребляем электрическую энергию(13 и 14 слайд). Следовательно, нужны устройства, которые преобразовывали механическую энергию в электрическую. Эти машины получили название генераторы. Послушаем сообщения о генераторах .

(16 слайд) Выработать электроэнергию – это полдела. Ведь еще нужно быстро и экономично передать потребителям и в соответствии с нуждами разумно распределить между ними. Когда говорят о передаче электроэнергии, то имеют в виду передачу больших мощностей на большие расстояния. Такая передача должна осуществляться с очень малыми потерями, т.е. высоким кпд, иначе она будет нерентабельно (17 слайд). Приведу один пример. Почти на 1000 км передается электроэнергия с потерями 7-8 %. Послушаем учащихся, которые готовили 3 вопрос.

Эффективность передачи электроэнергии достигается применением высоких напряжений. Напряжение на линии передачи приходится делать тем выше, чем большее расстояние, на которое должна передаваться электроэнергия (18-19 слайд).

Линии передач переменного тока строят на напряжение 220, 330, 500 и 750 кВт. Научно-технические исследования показали, что для обеспечения устойчивости в работе и большой пропускаемой способности целесообразно делать две параллельные линии передач.

На линиях передач применяются сталеалюминиевые провода: они состоят из внутреннего стального сердечника, и внешних алюминиевых проволок, по которым проходит электрический ток.

Могущество энергетического хозяйства страны зависит от его единства. Некоторые электростанции не могут работать равномерно: гидростанции – из-за спада воды, ветростанции – из-за изменения скорости ветра, приливные – из-за периодичности приливов и отливов, гелио станции не действуют ночью. Потребность в электроэнергии значительно колеблется в течение суток и зависит от времени года, а электростанции не могут вырабатывать энергию про запас. Именно поэтому, для того чтобы надежно и экономически выгодно обеспечивать всех потребителей электроэнергии, нужно объединять станции в единую систему; только в этих условиях они будут взаимно помогать друг другу.

Энергопотребление оказывает заметное воздействие на природу, загрязняя атмосферу, землю и воду вредными выбросами газов, твердых частиц и сточными водами электростанций. При этом расходуется большое количество водных и земельных ресурсов; биосфера подвергается неблагоприятному воздействию радиации, связанному с эксплуатацией атомных электростанций, электромагнитных полей линий электропередач.

Прослушаем сообщения об экологических проблемах электростанций.

Экологические последствия энергопотребления в России, по крайней мере в европейской части, усугубляется ее климатическими особенностями. В средних широтах Северного полушария преобладает западный перенос воздушных масс. Поэтому при сжигании в Европе энергоносителей, часто загрязняющие вещества попадают на нашу территорию .

Посмотрите таблицу и скажите, какая же станция экологически чистая и почему (20 слайд)?

Влияние энергопотребления на окружающую среду полностью устранить невозможно, но можно его существенно уменьшить. Некоторые выбросы, например, соединений серы, золы и других твердых частиц, можно уменьшить переработкой вредных веществ в нейтральные соединения или применением современных эффективных фильтров. Для выбросов углекислого газа не существует технологий переработки в безвредные соединения, и единственный путь снизить такие выбросы – это ограничить потребление ископаемого топлива (21 слайд).

(22 слайд) Итак, в 2050 году, то есть через 43 года, общее ежегодное количество потребления энергии может достичь 74 млрд тонн. Ну а что будет после 2050 ? Есть ли пределы развития энергетика? Если рост энергетики будет продолжаться со скоростью всего 2%, через 100 -150 лет искусственное энергопотребление на Земле составит 2 % от солнечной. А 1000 лет величина энергии, добываемая человеком, сравняется с энергией, приносимой Солнцем. Предел ли это? Нужна ли человечеству еще большая энергия? (Обсуждение данного вопроса)

Ребята, большой спасибо вам за урок. Надеюсь, что наш разговор пройдет не бесследно, видь вы будущее нашей страны и вам решать судьбу будущих поколений.

Литература:

  1. Г.Я.Мякишев « Физика – 11 класс», Дрофа, Москва 2002
  2. А.Проценко «Энергия будущего», «Молодая гвардия», Москва, 1985
  3. Журнал «Физика в школе»
  4. Материалы сети Интернет
  5. Программное обеспечение Физика 7-11 кл. Кирилл и Мефодий.
Ссылка на основную публикацию
Adblock detector