Уравнение оси симметрии параболы имеет вид

Уравнение оси симметрии параболы имеет вид

Рассмотрим на плоскости прямую и точку, не лежащую на этой прямой. И эллипс, и гипербола могут быть определены единым образом как геометрическое место точек, для которых отношение расстояния до данной точки к расстоянию до данной прямой есть постоянная вели-

чина ε. При 0 1 — гипербола. Параметр ε является эксцентриситетом как эллипса, так и гиперболы. Из возможных положительных значений параметра ε одно, а именно ε = 1, оказывается незадействованным. Этому значению соответствует геометрическое место точек, равноудаленных от данной точки и от данной прямой.

Определение 8.1. Геометрическое место точек плоскости, равноудаленных от фиксированной точки и от фиксированной прямой, называют параболой.

Фиксированную точку называют фокусом параболы, а прямую — директрисой параболы. При этом полагают, что эксцентриситет параболы равен единице.

Из геометрических соображений вытекает, что парабола симметрична относительно прямой, перпендикулярной директрисе и проходящей через фокус параболы. Эту прямую называют осью симметрии параболы или просто осью параболы. Парабола пересекается со своей осью симметрии в единственной точке. Эту точку называют вершиной параболы. Она расположена в середине отрезка, соединяющего фокус параболы с точкой пересечения ее оси с директрисой (рис. 8.3).

Уравнение параболы. Для вывода уравнения параболы выберем на плоскости начало координат в вершине параболы, в качестве оси абсцисс — ось параболы, положительное направление на которой задается положением фокуса (см. рис. 8.3). Эту систему координат называют канонической для рассматриваемой параболы, а соответствующие переменные — каноническими.

Обозначим расстояние от фокуса до директрисы через p. Его называют фокальным параметром параболы.

Тогда фокус имеет координаты F(p/2; 0), а директриса d описывается уравнением x = — p/2. Геометрическое место точек M(x; y), равноудаленных от точки F и от прямой d, задается уравнением

Возведем уравнение (8.2) в квадрат и приведем подобные. Получим уравнение

которое называют каноническим уравнением параболы.

Отметим, что возведение в квадрат в данном случае — эквивалентное преобразование урав-нения (8.2), так как обе части уравнения неотрицательны, как и выражение под радикалом.

Вид параболы. Если параболу у 2 = x, вид которой считаем известным, сжать с коэффициентом 1/(2р) вдоль оси абсцисс, то получится парабола общего вида, которая описывается уравнением (8.3).

Пример 8.2. Найдем координаты фокуса и уравнение директрисы параболы, если она проходит через точку, канонические координаты которой (25; 10).

В канонических координатах уравнение параболы имеет вид у 2 = 2px. Поскольку точка (25; 10) находится на параболе, то 100 = 50p и поэтому p = 2. Следовательно, у 2 = 4x является каноническим уравнением параболы, x = — 1 — уравнением ее директрисы, а фокус находится в точке (1; 0).

Оптическое свойство параболы. Парабола имеет следующее оптическое свойство. Если в фокус параболы поместить источник света, то все световые лучи после отражения от параболы будут параллельны оси параболы (рис. 8.4). Оптическое свойство означает, что в любой точке M параболы нормальный вектор касательной составляет с фокальным радиусом MF и осью абсцисс одинаковые углы.

Парабола — это кривая, образованная геометрическим множеством точек, находящихся на одинаковом расстоянии от некой точки $F$, называемой фокусом и не лежащей ни на этой кривой, ни на прямой $d$.

Читайте также:  Как поставить мак ос на ноутбук

То есть отношение расстояний от произвольной точки на параболе до фокуса и от этой же точки до директрисы всегда равно единице, это отношение называется эксцентриситетом.

Термин “эксцентриситет” также используется для гипербол и эллипсов.

Основные термины из канонического уравнения параболы

Точка $F$ называется фокусом параболы, а прямая $d$ — её директрисой.

Осью симметрии параболы называется прямая, проходящая через вершину параболы $O$ и её фокус $F$, так, что она образует прямой угол с директрисой $d$.

Вершиной параболы называется точка, расстояние от которой до директрисы минимальное. Эта точка делит расстояние от фокуса до директрисы пополам.

Что из себя представляет каноническое уравнение параболы

Каноническое уравнение параболы довольно простое, его несложно запомнить и оно имеет следующий вид:

$y^2 = 2px$, где число $p$ должно быть больше нуля.

Попробуй обратиться за помощью к преподавателям

Число $p$ из уравнения носит название "фокальный параметр".

Данное уравнение параболы, вернее именно эта наиболее часто применяемая в высшей математике формула, применимо в том случае, когда ось параболы совпадает с осью $OX$, то есть парабола располагается как будто на боку.

Парабола, описанная уравнением $x^2 = 2py$ — это парабола, ось которой совпадает с осью $OY$, к таким параболам мы привыкли в школе.

А парабола, которая имеет минус перед второй частью уравнения ($y^2 = — 2px$), развёрнута на 180° по отношению к каноничной параболе.

Парабола является частным случаем кривой 2-ого порядка, соответственно, в общем виде уравнение для параболы выглядит точно также как для всех таких кривых и подходит для всех случаев, а не только когда парабола параллельна $OX$.

При этом дискриминант, вычисляющийся по формуле $B^2 – 4AC$ равен нулю, а само уравнение выглядит так: $Ax^2 + B cdot x cdot y + Ccdot y^2 + Dcdot x + Ecdot y + F = 0$

Вывод с помощью графика канонического уравнения для параболы

Задай вопрос специалистам и получи
ответ уже через 15 минут!

Рисунок 1. График и вывод канонического уравнения параболы

Из определения, приведённого выше в данной статье, составим уравнение для параболы с верхушкой, расположенной на пересечении координатных осей.

Используя имеющийся график, определим по нему $x$ и $y$ точки $F$ из определения параболической кривой, данного выше, $x = frac

<2>$ и $y = 0$.

Для начала составим уравнение для прямой $d$ и запишем его: $x = — frac

<2>$.

Для произвольной точки M, лежащей на нашей кривой, согласно определению, справедливо следующее соотношение:

$FM$ = $ММ_d$ (1), где $М_d$ — точка пересечения перпендикуляра, опущенного из точки $M$ c директрисой $d$.

Икс и игрек для этой точки равны $frac

<2>$ $y$ соответственно.

Запишем уравнение (1) в координатной форме:

Теперь для того чтобы избавиться от корня необходимо возвести обе части уравнения в квадрат:

После упрощения получаем каноническое уравнение параболы: $y^2 = px$.

Парабола, описываемая с помощью квадратичной функции

Уравнение, описывающее параболу с верхушкой, расположенной где угодно на графике и необязательно совпадающей с пересечением осей координат, выглядит так:

Чтобы вычислить $x$ и $y$ для вершины такой параболы, необходимо воспользоваться следующими формулами:

$y_A = — frac<4a>$, где $D = b^2 – 4ac$.

Читайте также:  Тарифы билайн с раздачей интернета на компьютер

Пример составления классического уравнения параболы

Задача. Зная расположение фокусной точки, составить каноническое уравнение параболы. Координаты точки фокуса $F$ $(4; 0)$.

Так как мы рассматриваем параболу, график которой задан каноническим уравнением, то её вершина $O$ находится на пересечении осей икс и игрек, следовательно расстояние от фокуса до вершины равно $frac<1><2>$ фокального параметра $frac

<2>= 4$. Путём нехитрых вычислений получим, что сам фокальный параметр $p = 8$.

После подстановки значения $p$ в каноническую форму уравнения, наше уравнение примет вид $y^2 = 16x$.

Как составить уравнение параболы по имеющемуся графику

Рисунок 2. Каноническое уравнение для параболы график и пример для решения

Для начала необходимо выбрать точку $М$, принадлежащую графику нашей функции, и, опустив из неё перпендикуляры на оси $OX$ и $OY$, записать её икс и игрек, в нашем случае точка $M$ это $(2;2)$.

Теперь нужно подставить полученные для этой точки $x$ и $y$ в каноническое уравнение параболы $y^2 = px$, получаем:

Сократив, получаем следующее уравнение параболы $y^2 = 2 cdot x$.

Так и не нашли ответ
на свой вопрос?

Просто напиши с чем тебе
нужна помощь

Что такое парабола знают, пожалуй, все. А вот как ее правильно, грамотно использовать при решении различных практических задач, разберемся ниже.

Сначала обозначим основные понятия, которые дает этому термину алгебра и геометрия. Рассмотрим все возможные виды этого графика.

Узнаем все основные характеристики этой функции. Поймем основы построения кривой (геометрия). Научимся находить вершину, другие основные величины графика данного типа.

Узнаем: как правильно строится искомая кривая по уравнению, на что надо обратить внимание. Посмотрим основное практическое применение этой уникальной величины в жизни человека.

Что такое парабола и как она выглядит

Алгебра: под этим термином понимается график квадратичной функции.

Геометрия: это кривая второго порядка, имеющая ряд определенных особенностей:

  1. Любая прямая пересекает на плоскости искомую линию в 2-х точках – так называемые, «нули» (кроме основного экстремума графика).
  2. Множество точек плоскости ХОY (М), расстояние FM которых до F = расстоянию MN до прямой Где F – фокус, AN – директриса. Эти понятия рассмотрим ниже.

Каноническое уравнение параболы

На рисунке изображена прямоугольная система координат (XOY), экстремум, направление ветвей чертежа функции вдоль оси абсцисс.

Каноническое уравнение имеет вид:

где коэффициент p – фокальный параметр параболы (AF).

В алгебре оно запишется иначе:

y = a x 2 + b x + c (узнаваемый шаблон: y = x 2 ).

Свойства и график квадратичной функции

Функция обладает осью симметрии и центром (экстремум). Область определения – все значения оси абсцисс.

Область значений функции – (-∞, М) или (М, +∞) зависит от направления ветвей кривой. Параметр М тут означает величину функции в вершине линии.

Как определить, куда направлены ветви параболы

Чтобы найти направление кривой такого типа из выражения, нужно определить знак перед первым параметром алгебраического выражения. Если а ˃ 0, то они направлены вверх. Если наоборот – вниз.

Как найти вершину параболы по формуле

Нахождение экстремума является основным этапом при решении множества практических задач. Конечно, можно открыть специальные онлайн калькуляторы, но лучше это уметь делать самому.

Читайте также:  Виды рамок для текста

Как же ее определить? Есть специальная формула. Когда b не равно 0, надо искать координаты этой точки.

Формулы нахождения вершины:

Пример.

Имеется функция у = 4 * x 2 + 16 * x – 25. Найдём вершины этой функции.

Для такой линии:

  • х = -16 / (2 * 4) = -2;
  • y = 4 * 4 — 16 * 2 — 25 = 16 — 32 — 25 = -41.

Получаем координаты вершины (-2, -41).

Смещение параболы

Классический случай, когда в квадратичной функции y = a x 2 + b x + c, второй и третий параметры равны 0, а = 1 – вершина находится в точке (0; 0).

Движение по осям абсцисс или ординат обусловлено изменением параметров b и c соответственно. Сдвиг линии на плоскости будет осуществляться ровно на то количество единиц, чему равно значение параметра.

Пример.

Имеем: b = 2, c = 3.

Это означает, что классический вид кривой сдвинется на 2 единичных отрезка по оси абсцисс и на 3 — по оси ординат.

Как строить параболу по квадратному уравнению

Школьникам важно усвоить, как правильно начертить параболу по заданным параметрам.

Анализируя выражения и уравнения, можно увидеть следующее:

  1. Точка пересечения искомой линии с вектором ординат будет иметь значение, равное величине с.
  2. Все точки графика (по оси абсцисс) будут симметричны относительно основного экстремума функции.

Кроме того, места пересечения с ОХ можно найти, зная дискриминант (D) такой функции:

D = (b 2 — 4 * a * c).

Для этого нужно приравнять выражение к нулю.

Наличие корней параболы зависит от результата:

  • D ˃ 0, то х1, 2 = (-b ± D 0,5 ) / (2 * a);
  • D = 0, то х1, 2 = -b / (2 * a);
  • D ˂ 0, то нет точек пересечения с вектором ОХ.

Получаем алгоритм построения параболы:

  • определить направление ветвей;
  • найти координаты вершины;
  • найти пересечение с осью ординат;
  • найти пересечение с осью абсцисс.

Пример 1.

Дана функция у = х 2 — 5 * х + 4. Необходимо построить параболу. Действуем по алгоритму:

  1. а = 1, следовательно, ветви направлены вверх;
  2. координаты экстремума: х = — (-5) / 2 = 5/2; y = (5/2) 2 — 5 * (5/2) + 4 = -15/4;
  3. с осью ординат пересекается в значении у = 4;
  4. найдем дискриминант: D = 25 — 16 = 9;
  5. ищем корни:
  • Х1 = (5 + 3) / 2 = 4; (4, 0);
  • Х2 = (5 — 3) / 2 = 1; (1, 0).

По полученным точкам можно построить параболу.

Пример 2.

Для функции у = 3 * х 2 — 2 * х — 1 нужно построить параболу. Действуем по приведенному алгоритму:

  1. а = 3, следовательно, ветви направлены вверх;
  2. координаты экстремума: х = — (-2) / 2 * 3 = 1/3; y = 3 * (1/3) 2 — 2 * (1/3) — 1 = -4/3;
  3. с осью у будет пересекаться в значении у = -1;
  4. найдем дискриминант: D = 4 + 12 = 16. Значит корни:
  • Х1 = (2 + 4) / 6 = 1; (1;0);
  • Х2 = (2 — 4) / 6 = -1/3; (-1/3; 0).

По полученным точкам можно построить параболу.

Директриса, эксцентриситет, фокус параболы

Исходя из канонического уравнения, фокус F имеет координаты (p/2, 0).

Прямая АВ – директриса (своего рода хорда параболы определенной длины). Ее уравнение: х = -р/2.

Эксцентриситет (константа) = 1.

Заключение

Мы рассмотрели тему, которую изучают школьники в средней школе. Теперь вы знаете, глядя на квадратичную функцию параболы, как найти её вершину, в какую сторону будут направлены ветви, есть ли смещение по осям, и, имея алгоритм построения, сможете начертить её график.

Ссылка на основную публикацию
Adblock detector